Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: http://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2016, 4(1), 25-29
DOI: 10.12691/jaem-4-1-3
Open AccessReview Article

Marine Bacteria: A Potential Tool for Antibacterial Activity

Karabi Biswas1, Dipak Paul1 and Sankar Narayan Sinha1,

1Environmental Microbiology Research Laboratory, University of Kalyani, Kalyani 741235, West Bengal, India

Pub. Date: April 25, 2016

Cite this paper:
Karabi Biswas, Dipak Paul and Sankar Narayan Sinha. Marine Bacteria: A Potential Tool for Antibacterial Activity. Journal of Applied & Environmental Microbiology. 2016; 4(1):25-29. doi: 10.12691/jaem-4-1-3

Abstract

The marine environment possesses a wide range of diverse habitats from which novel sources of natural products can be derived. Marine microorganisms produce a diverse array of metabolites with novel chemical structures and potent antibacterial activities. Now-a-days, microbial pathogens show antibiotic resistance. Marine bacteria have been shown to produce antibacterial compounds as extensively as terrestrial bacteria. It was reviewed that the bioactive metabolites extracted from bacteria had broad range of antibacterial activity against various antibiotic resistance bacteria which requires more attention in terms of discovery of drugs.

Keywords:
marine bacteria antibacterial activity bioactive compounds

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Gochfeld, D. J., El Sayed, K. A., Yousaf, M., Hu, J. F., Bartyzel, P., Dunbar, D. C., Wilkins, S. P., Zjawiony, J. K., Schinazi, R. F., and Wirtz, S. S. (2003). Marine natural products as lead anti-HIV agents. Mini Reviews in Medicinal Chemistry 3(5): 401-424.
 
[2]  Newman, H. A., Romeo, M. J., Lewis, S. E., Yan, B. C., Orlean, P., & Levin, D. E. (2005). Gpi19, the Saccharomyces cerevisiae homologue of mammalian PIG-P, is a subunit of the initial enzyme for glycosylphosphatidylinositol anchor biosynthesis. Eukaryotic Cell 4(11): 1801-1807.
 
[3]  Haefner, B. (2003). Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today 8(12): 536-544.
 
[4]  Chellaram, C., & Prem Anand, T. (2010). Antitumor assay using artemia toxicity of five Cyprae sp. (Mollusca; Gastropoda) from Gulf of Mannar coastal waters, Current Scenario in Microbiol Biotechnology, Excel Publication, New Delhi, India, pp 60-64.
 
[5]  Johnson, R. M., Schwent, R. M., & Press, W. (1968). The characteristics and distribution of marine bacteria isolated from the Indian Ocean. Limnology and Oceanography 13(4): 656-664.
 
[6]  Lemos, M. L., Toranzo, A. E., & Barja, J. L. (1985). Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbial Ecology 11(2): 149-163.
 
[7]  Jensen, M. P., Turner, L. R., Turner, J. A., & Romano, J. M. (1996). The use of multiple-item scales for pain intensity measurement in chronic pain patients. Pain 67(1): 35-40.
 
[8]  Distel, R. A., Laca, E. A., Griggs, T. C., & Demment, M. W. (1995). Patch selection by cattle: maximization of intake rate in horizontally heterogeneous pastures. Applied Animal Behaviour Science 45(1): 11-21.
 
[9]  Wenzel, S. C., & Müller, R. (2005). Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Current Opinion in Biotechnology 16(6): 594-606.
 
[10]  Villa, F. A., & Gerwick, L. (2010). Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacology and Immunotoxicology 32(2): 228-237.
 
[11]  Mayer, A. M., Rodríguez, A. D., Berlinck, R. G., & Fusetani, N. (2011). Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 153(2): 191-222.
 
[12]  Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T., & Prinsep, M. R. (2011). Marine natural products. Natural Product Reports 28(2): 196-268.
 
[13]  Hughes, C. C., & Fenical, W. (2010). Antibacterial from the sea. Chemistry 16: 12512-12525.
 
[14]  Yasuhara-Bell, J., & Lu, Y. (2010). Marine compounds and their antiviral activities. Antiviral Research 86(3): 231-240.
 
[15]  Smith, V. J., Desbois, A. P., & Dyrynda, E. A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs 8(4): 1213-1262.
 
[16]  Lucas-Elio, P., Hernandez, P., Sanchez-Amat, A., & Solano, F. (2005). Purification and partial characterization of marinocine, a new broad-spectrum antibacterial protein produced by Marinomonas mediterranea. Biochimica et Biophysica Acta (BBA)-General Subjects 1721(1): 193-203.
 
[17]  Mc Evoy, G. (1993). Ahes drug information Amr. Soc. Hospital Pharm, USA.
 
[18]  Charyulu, E. M., Sekaran, G., Rajakumar, G. S., & Gnanamani, A. (2009). Antimicrobial activity of secondary metabolite from marine isolate, Pseudomonas sp. against Gram positive and negative bacteria including MRSA. Indian Journal of Experimental Biology 47(12): 964-968.
 
[19]  Tawiah, A. A., Gbedema, S. Y., Adu, F., Boamah, V. E., & Annan, K. (2012). Antibiotic producing microorganisms from River Wiwi, Lake Bosomtwe and the Gulf of Guinea at Doakor Sea Beach, Ghana. BMC microbiology 12(1): 234.
 
[20]  Darabpour, E., Ardakani, M. R., Motamedi, H., & Ronagh, M. T. (2012). Isolation of a potent antibiotic producer bacterium, especially against MRSA, from northern region of the Persian Gulf. Bosnian Journal of Basic Medical Sciences 12(2): 108-121.
 
[21]  Isnansetyo, A., & Kamei, Y. (2003). Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. International Journal of Systematic and Evolutionary Microbiology 53(2): 583-588.
 
[22]  Radjasa, O. K., Martens, T., Grossart, H. P., Brinkhoff, T., Sabdono, A., & Simon, M. (2007). Antagonistic activity of a marine bacterium Pseudoalteromonas luteoviolacea TAB4. 2 associated with coral Acropora sp. Journal of Biological Sciences 7(2): 239-246.
 
[23]  Holmström, C., & Kjelleberg, S. (1999). Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiology Ecology 30(4): 285-293.
 
[24]  Hamid, R., Usup, G., & Ahmad, A. (2013). Antimicrobial activity of bacteria associated with various marine sources. Advances in Environmental Biology 7(2): 356-366.
 
[25]  Mohseni, M., Norouzi, H., Hamedi, J., & Roohi, A. (2013). Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. International Journal of Molecular and Cellular Medicine 2(2): 64-71.
 
[26]  Mantada, P. K., Sankar, G. G., & Prabhakar G. T. (2013). Isolation and characterization of potent antibiotic producing marine actinomycetes from Tiruchendur and Kulasekarapattinam, Tamilnadu. Global Journal of Science Frontier Research 13(2): 1-5.
 
[27]  Ahmed, N., Uzair, B., Ayaz, S., & Ahmed, V. U. (2008). Antibacterial activity of marine bacteria from Arabian Sea of Pakistan. The Internet Journal of Microbiology 4(2): 1-5.
 
[28]  Berdy, J. (1989). The discovery of new bioactive microbial metabolites: screening and identification. Progress in Industrial Microbiology 27: 3-27.
 
[29]  Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260 (5105): 214-216.
 
[30]  Demain, A. L., Aharonowitz, Y., & Martin, J. F. (1983). Metabolic control of secondary biosynthetic pathways, In: Vining, L.C. (ed). Biochemistry and genetic regulation of commercially important antibiotics, Addison-Wesley, Reading. pp. 49-71.
 
[31]  DiMasi, E., Foran, B., Aronson, M. C., & Lee, S. (1994). Quasi-two-dimensional metallic character of Sm2Te5 and SmTe3. Chemistry of Materials 6(10): 1867-1874
 
[32]  Cragg, G. M., Newman, D. J., & Snader, K. M. (1997). Natural products in drug discovery and development. Journal of Natural Products 60(1): 52-60.
 
[33]  Fehér, D., Barlow, R., McAtee, J., & Hemscheidt, T. K. (2010). Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. Journal of Natural Products 73(11): 1963-1966.
 
[34]  Hayashida‐Soiza, G., Uchida, A., Mori, N., Kuwahara, Y., & Ishida, Y. (2008). Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. Journal of Applied Microbiology 105(5): 1672-1677.
 
[35]  Cetina, A., Matos, A., Garma, G., Barba, H., Váquez, R., Zepeda-Rodríguez, A., Jay, D., Monteón, V., & Lopez-A, R. (2010). Antimicrobial activity of marine bacteria isolated from Gulf of Mexico. Revista Peruana de Biología 17(2): 231-236.
 
[36]  Lu, X., Liu, X., Long, C., Wang, G., Gao, Y., Liu, J., & Jiao, B. (2011). A preliminary study of the microbial resources and their biological activities of the East China Sea. Evidence-Based Complementary and Alternative Medicine 806485.
 
[37]  El-Gendy, M. M., Shaaban, M., El-Bondkly, A. M., & Shaaban, K. A. (2008). Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces. Applied Biochemistry and Biotechnology 150(1): 85-96.
 
[38]  Andrianasolo, E. H., Haramaty, L., Rosario-Passapera, R., Bidle, K., White, E., Vetriani, C., Falkowski, P., & Lutz, R. (2009). Ammonificins A and B, hydroxyethylamine chroman derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Journal of Natural Products 72(6): 1216-1219.
 
[39]  Zhang, D. J., Liu, R. F., Li, Y. G., Tao, L. M., & Tian, L. (2010). Two new antifungal cyclic lipopeptides from Bacillus marinus B-9987. Chemical and Pharmaceutical Bulletin 58(12): 1630-1634.
 
[40]  Chen, L., Wang, N., Wang, X., Hu, J., & Wang, S. (2010). Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10.Bioresource Technology 101(22): 8822-8827.
 
[41]  Desjardine, K., Pereira, A., Wright, H., Matainaho, T., Kelly, M., & Andersen, R. J. (2007). Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. Journal of Natural Products 70(12): 1850-1853.
 
[42]  Engelhardt, K., Degnes, K. F., Kemmler, M., Bredholt, H., Fjærvik, E., Klinkenberg, G., Sletta, H., Ellingsen, T. E., & Zotchev, S. B. (2010). Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Applied and Environmental Microbiology 76(15): 4969-4976.
 
[43]  Oku, N., Kawabata, K., Adachi, K., Katsuta, A., & Shizuri, Y. (2008). Unnarmicins A and C, new antibacterial depsipeptides produced by marine bacterium Photobacterium sp. MBIC06485. Journal of Antibiotics 61(1): 11-17.
 
[44]  Ojika, M., Inukai, Y., Kito, Y., Hirata, M., Iizuka, T., & Fudou, R. (2008). Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chemistry–An Asian Journal 3(1): 126-133.
 
[45]  Oku, N., Adachi, K., Matsuda, S., Kasai, H., Takatsuki, A., & Shizuri, Y. (2008). Ariakemicins A and B, novel polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix. Organic Letters 10(12): 2481-2484.
 
[46]  Dufourcq, R., Chalkiadakis, E., Fauchon, M., Deslandes, E., Kerjean, V., Chanteau, S., Petit, E., Guezennec, J. and Dupont‐Rouzeyrol, M. (2014). Isolation and partial characterization of bacteria (Pseudoalteromonas sp.) with potential antibacterial activity from a marine costal environment from New Caledonia. Letters in Applied Microbiology 58(2):.102-108.
 
[47]  Graça, A.P., Viana, F., Bondoso, J., Correia, M.I., Gomes, L., Humanes, M., Reis, A., Xavier, J.R., Gaspar, H. and Lage, O.M. (2015). The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Frontiers in Microbiology 6:389.
 
[48]  Sinimol, S., Sarika, A. R., and Nair, A. J. (2016). Diversity and antagonistic potential of marine microbes collected from south-west coast of India. 3 Biotech 6(1), 1-9.