Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: http://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2015, 3(5), 119-122
DOI: 10.12691/jaem-3-5-2
Open AccessArticle

Production and Estimation of Keratinase by Immobilized and Free Bacillus licheniformis (St. 24)

Farag M. Saieb1, Salama A. Boaker1, Hasham M. El-komy2 and Ahmed Issa3, 4,

1Microbiology Laboratory, Department of Botany, Omar Almukhtar University, El-beida, Libya

2Department of Botany, Faculty of Science, Minia University, Minia, Egypt

3Biology Department, Faculty of Science, Taif University, Taif KSA

4Department of Botany, Faculty of Science, Assiut University, Assiut , Egypt

Pub. Date: January 05, 2016

Cite this paper:
Farag M. Saieb, Salama A. Boaker, Hasham M. El-komy and Ahmed Issa. Production and Estimation of Keratinase by Immobilized and Free Bacillus licheniformis (St. 24). Journal of Applied & Environmental Microbiology. 2015; 3(5):119-122. doi: 10.12691/jaem-3-5-2

Abstract

Alginate immobilized Bacillus licheniformis (St. 24) were isolated from chicken feather wastes recorded higher keratinase production than free bacterial suspension. 2-3% alginate concentration, medium pellet size, and in addition of keratin powder as adjuvant were optimum for keratinase production by the immobilized bacteria. Encapsulated B. licheniformis st. 24 was successfully produced keratinase for three repeated batch fermentation cycles each 24 hour incubation period. Immobilization of the whole cells proved to be useful for continuous production of keratinase and feather degradation.

Keywords:
Bacillus licheniformis keratinase

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Abdel-Naby, M. (1993): immobilization of Aspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes. Appl. Biotechem. Biotechnol. 38: 69-81.
 
[2]  Chatterjee S (2015) :Production and estimation of alkaline protease by and immobilized Bacillus licheniformis isolated from poultry farm soil of 24 Parganas its reusability. J Adv Pharm Technol Res.; 6(1): 2-6.
 
[3]  Cheethman, P. S. J., (1985): Principles of industrial enzymology: Basis of utilization of soluble and immobilized enzymes in industrial process. In: Wisemen, A., editor. Handbook of enzymes biotechnology. 2nd ed. West Sussex, UK: Ellis Harwood.
 
[4]  Chen, S. Y.; Hardin, C. C. and Swaisgood, H. E. (1993): Purification and of B-structural domains of B-lactoglobulin by immobilized proteolysis. J. Protein Chem. 12: 613-25.
 
[5]  Chibata, I. (1978): Immobilized enzyme-research and development. New York: John Wiley. Pp. 108-147.
 
[6]  Church F. C.; Swaigood, H. E. and Catignani, G. L. (1984): Compositional analysis of proteins following hydrolysis by immobilized proteinase. J. Appl. Biochem. 6: 205-11.
 
[7]  Delory, E. (1949): Colourimetric estimation of ammonia. Vougel Inorganic Chemistry, 4th ed. The English Language Book Society and Longman, London.
 
[8]  El-Katatny, M. (2008): The activity of β-1,3-glucanse from Trichoderma harzianum in native form and after immobilization on calcium alginate. Archives of Phytopathology and plant protection. 41: 175-186.
 
[9]  El-Katatny, M. H.; Hetta, A. M.; Shaban, G. M. and El-Komy, H. M. (2003): Improvement of cell wall degrading enzymes production by akginate encapsulated Trichoderma spp. Food Technol. 41: 219-225.
 
[10]  El-Komy, H. M. (2001): Survival of and wheat root colonization by alginate encapsulation Herbaspirillum spp. Folia microbial. 46: 25-30.
 
[11]  El-Komy, H. M. (2005): Co-immobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants Food Tech. Biotech. 43: 19-27.
 
[12]  Farag, A. M. and Hassan, M. A. (2004): Purification, characterization and immobilization of keratinase from Asoergillus orizae. Enzyme Microb. Technol. 34: 85-93.
 
[13]  Furusaki, S. and Seki, M. (1992): Use and engineering aspects of immobilized cells in biotechnology. Adv. Biochem. 46: 161-185.
 
[14]  Hassan, M. A. and El Sayed, S. M. (1998): Proceeding of the sixth Egyptian Biochemical Conference, Cairo University. Giza, Egypt. pp. 327-347.
 
[15]  Lowry, O. H.; Rosenberg, W. J. Farr, A. L. and Randell, R. J. (1951): Quantitation of protein using Folin Ciocalteu reagent. J. Biol. Chem. 193: 265-75.
 
[16]  Lin, X.; Shih, J. C. H. and Swaisgood, E. H. (1996): Hydrolysis of feather keratin by immobilized keratinase. Appl. Environ Microbiol.
 
[17]  Monsan, P. and Combes, D. (1998): Enzyme stabilization by immobilization. Methods in enzymology. San Diego, C.: Academic press. Pp584-598.
 
[18]  Mosbach, K. (1987): Immobilized enzymes and cells. Part B. Methods in Enzymology. Vol. 135.
 
[19]  Shaban, G. M. and El-Komy, H. M. (2000): Survival and proliferation of alginate encapsulated TrichodermaI spp. In Egyptian soil in comparison with allyl alcohol soil fungation. Mycopathologia, 151: 139-146.
 
[20]  Swaisgood, H. E. and Catignani, G. L. (1987): Use of immobilized proteinases and peptidases to study structural changes in proteins. Meth. Enzymol. 135: 596-604.
 
[21]  Syladatk, C.; Foolade, J. and Stoffregen, A. (1990): Screening for matrices for viable cells. Elsavier Science publishers, Amsterdam.
 
[22]  Tomaralli, R. M.; Charney, J. and Harding. (1949): The use of azoalbumin as a substrate in the colorimetric determination of peptic and tryptic activity. J Lab Clin Med; 34: 428-433.
 
[23]  Wang, J. J.; Swaisgood, H. E. and Shih, J. C. (2003a): Bioimmobilization of keratinase using Bacillus subtilis and Escherichia coli systems. Biotechnol. Bioeng. 81: 421-9.
 
[24]  Wang, J. J.; Swaisgood, H. E. and Shih, J. C. (2003b): Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. Enzyme and Microbial Technology. 32: 812-819.
 
[25]  Williams and Shih, (1989): Enumeration of some microbial groups in thermophilic poultry waste digesters and enrichment of feather-degrading culture, 67 J. Appl. Bacteriol.
 
[26]  Wilson, K. and Goulding, K. (1986): Principles and Techniques of practical biotechnology. London: Edward Amold Ltd.