Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: http://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2015, 3(4), 101-105
DOI: 10.12691/jaem-3-4-2
Open AccessArticle

16S rDNA Identification of Arsenite-Oxidizing Bacillus sp. Isolated from Arsenic Contaminated Surface Water Uttar Pradesh, India

Bilal Ahmad Tantry1, 2, , Divya Shrivastava2, Ibrahim Taher1 and Mudasar Nabi Tantry3

1Department of Microbiology, college of medicine, Aljouf University, Sakaka,Saudi Arabia

2Department of life science, Jaipur National University, Jaipur India

3Department of Clinical Biochemistry, Kashmir University, Srinagar, India

Pub. Date: October 15, 2015

Cite this paper:
Bilal Ahmad Tantry, Divya Shrivastava, Ibrahim Taher and Mudasar Nabi Tantry. 16S rDNA Identification of Arsenite-Oxidizing Bacillus sp. Isolated from Arsenic Contaminated Surface Water Uttar Pradesh, India. Journal of Applied & Environmental Microbiology. 2015; 3(4):101-105. doi: 10.12691/jaem-3-4-2

Abstract

Three novel Arsenite oxidizing bacteria have been isolated from arsenic contaminated rivers from India. Samples were collected from the three districts of Uttar Pradesh (UP) viz., Ghaziabad, Moradabad and Gorakhpur Uttar Pradesh, India. All the three stains were observed as gram positive, aerobic, spore forming and rod shaped. The phylogentic analysis using 16S rDNA identification sequence showed that three isolates were belonged to the family of Bacillaceae and were closely related to Rummeliibacillus sp. (98%), Brevibacillus agri strain (88%) and Bacillus thuringiensis (99%). All the three strains are clearly distinguished from the related Bacillus species by its biochemical characteristics as well as the phylogentic relationship, therefore the three strains represent the novel sp. of the genus bacillus for which we proposed the names viz., Rummeliibacillus sp. AOBG-1, Brevibacillus sp. AOBMI-1 and Bacillus sp. AOB-GI-1 respectively. The GenBank accession numbers for the 16S rRNA gene sequence of the strains are KP295449, KP314033 and KP 308382.

Keywords:
Arsenite oxidizing bacteria Firmicutes bacillus sp. surface water and arsenic

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Sohel, N., Persson,L.A.,Rahman,M., Streat field, P.K.,Yunus,M., Ekstrom,E.C., Vahter, M., 2009.Arsenic in drinking water and adult mortality a population- based cohort study in rural Bangladesh. Epidemiology20, 824-830.
 
[2]  Mandal, B.K., Roy Chowdhury,T., Samanta,G., Basu,G.K., Chowdhury,P.P., Chanda, C.R., Lodh,D., 1996. Arsenic in ground water in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Curr.Sci. 70, 976-985.
 
[3]  Welch, A.H., Lico, M.S., Hughes, J.L., 1988. Arsenic in ground water of the western United States. Ground Water 26, 333-347.
 
[4]  Argos, M., Kalra,T., Rathouz,P.J., Chen,Y., Pierce,B., Parvez, F., Islam, T., Ahmed, A., Rakibuz - Zaman, M., Hasan,R., Sarwar, G., Slavkovich, V., van Geen, A., Graziano, J., Ahsan, H., 2010 . Arsenic exposure from drinking water,andall-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376, 252-258.
 
[5]  WHO, Arsenic in drinking-water,World Health Organization, 2011.And Bureau of Indian Standards 10500: 1991, Amendment II, 2003.
 
[6]  Bundschuh, Bhattacharya, P., Sracek, O., Mellano, M.F., Ramírez, A.E., Storniolo, A.R., Martín, R.A., Cortés, J., Litter, M.I., Jean, J.S., 2011. Arsenic removal from ground water of the Chaco-Pampeanplain (Argentina) using natural geological materials asadsorbents. J. Environ.Sci. Health 46, 1297-1310.
 
[7]  Ahamed, S., Sengupta, M. K., Mukherjee, A., Amir Hossain, M., Das, B., Nayak, B., et al. (2006). Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain. India: a severe danger. Science of the Total Environment, 370, 310-332.
 
[8]  Saumya Srivastava ,Yogesh Kumar Sharma. (2013) Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environ Monit Assess 185:4995-5002.
 
[9]  Abedin, M.J., Cresser, M.S., Meharg, A.A., Feldmann,J., Cotter-Howells, J., 2002a. Arsenic accumulation and metabolism in rice (Oryzasativa L.). Environ. Sci. Technol. 36, 962-968.
 
[10]  Shivaji,S., Suresh,K., Chaturvedi,P., Dube,S., Sengupta, S., 2005. Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from asiderite concretionin West Bengal, India. Int. J.Syst. Evol. Microbiol. 55, 1123-1127.
 
[11]  Sri Lakshmi Sunita, M., Prashant, S., Bramha Chari, P.V., NageswaraRao, S., Balaravi, P., KaviKishor, P.B., 2012. Molecular identification of arsenic-resistant estuarine Bacteria and characterization of their ars genotype. Ecotoxicology 21, 202-212.
 
[12]  Tsai, S.L, Singh, S., Chen, W., 2009. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr. Opin. Biotechnol. 20, 659-667.
 
[13]  Turner AW: Bacterial oxidation of arsenite. I. Description of bacteria isolated from arsenical cattle-dipping fluids. Aust J BiolSci 1954, 7(4):452-478.
 
[14]  Osborne FH, Enrlich HL: Oxidation of arsenite by a soil isolate of Alcaligenes. J ApplBacteriol 1976, 41(2):295-305. 8. Bruneel O, Personne JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Le Fleche A, Grimont PA: Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoules, France). J ApplMicrobiol 2003, 95(3):492-499.
 
[15]  Salmassi TM, Venkateswaren K, Satomi M, Nealson KH, Newman DK, Hering JG: Oxidation of arsenite by Agrobacterium albertimagni, AOL15, spnov., isolated from Hot Creek, California. Geomicrobiol J 2002, 19(1):53-66.
 
[16]  Mukhopadhyay R, Rosen BP, Phung LT, Silver S: Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 2002, 26(3):311-325.
 
[17]  Santini JM, Hoven RN vanden: Molybdenum-containing arsenite oxidase of the chemolithoautotrophicarsenite oxidizer NT- 26. J Bacteriol 2004, 186(6):1614-1619.
 
[18]  Oremland RS, Stolz JF, Hollibaugh JT: The microbial arsenic cycle in Mono Lake, California. FEMS MicrobiolEcol 2004, 48(1):15-27.
 
[19]  Davolos, D., Pietrangeli, B., 2011. Phylogenetic analysis on the arsenic resistant bacteria isolated from three different freshwater environments. Chem. Ecol. 27, 1-9.
 
[20]  Krieg, N.R. Bergey’s Manual of Systematic Bacteriology, Vol 1. Baltimore, MD: Williams and Wilkins; 2010.
 
[21]  Salmassi, T.M., Venkateswaren, K., Satomi, M., Nealson, K.H., Newman, D.K. and Hering, J.G. (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol J 19, 53-66.
 
[22]  Simeonova,D. ; Lievremon,t D.; Lagarde, F.; Muller,D.; Groudeva, V.; Lett, M.C (2004). Micro plate screening assay for detection of arsenite oxidizing and arsenate-reducing bacteria. FEMS Microbiol. Lett., 237, 249-253.
 
[23]  Dhar, R.K.; Zheng,Y.; Rubenstone, J.; van Geen,A. A rapid colorimetric method of measuring arsenic concentrations in groundwater. Anal. Chim. Acta 2004, 526, 203-209.
 
[24]  Wilson KH, Blitchington RB, Greene RC: Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 1990, 28(9):1942-1946.
 
[25]  Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0.Syst Biol. May;59(3):307-21. (PubMed)
 
[26]  Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., Claverie J.M., Gascuel O. Phylogeny.fr (2008): robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. Jul 1; 36(Web Server issue):W465-9. Epub 2008 Apr 19.
 
[27]  Muller, D., C. Medigue, S. Koechler, V. Barbe, M. Barakat, E. Talla, V. Bonnefoy, E. Krin, F. Arsene-Ploetze, C. Carapito, et al. 2007. A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet. 3: e53.
 
[28]  Pommier, J., V. Mejean, G. Giordano, and C. Iobbi-Nivol. 1998. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine Noxide reductase enzyme (TorA) in Escherichia coli. J. Biol. Chem. 273: 16615-16620.
 
[29]  Widdel, F., and N. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129:395-400.
 
[30]  Saltikov, C. W., R. A. Wildman, Jr., and D. K. Newman. 2005. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J. Bacteriol. 187:7390-7396.
 
[31]  L.Cai, G.H.Liu, C.Rensing, G.J.Wang (2009). Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils, BMC Microbiology 94.
 
[32]  M.M.Bahar, M. Megharaj, R. Naidu, Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil, Biodegradation 23(2012) 803-812.
 
[33]  R.S. Oremland, S.E. Hoeft, J.A. Santini, N.Bano, R.A. Hollibaugh, J.T. Hol-libaugh, Anaerobic oxidation 0f arsenite in Mono Lake water and by facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1, Appliedand Environmen- tal Microbiology 68(2002)4795-4802.
 
[34]  Rowland, H.A., Boothman, C., Pancost, R., Gault, A.G., Polya, D.A., Lloyd, J.R., 2009. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments. J. Environ. Qual. 38, 1598-1607.