Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Journal of Applied & Environmental Microbiology. 2014, 2(3), 86-89
DOI: 10.12691/jaem-2-3-5
Open AccessArticle

Reduction of Heavy Metal and Hardness from Ground Water by Algae

Anteneh Worku1 and Omprakash Sahu1,

1Department of Chemical Engineering, KIOT Wollo University Kombolcha (SW), Ethiopia

Pub. Date: April 02, 2014

Cite this paper:
Anteneh Worku and Omprakash Sahu. Reduction of Heavy Metal and Hardness from Ground Water by Algae. Journal of Applied & Environmental Microbiology. 2014; 2(3):86-89. doi: 10.12691/jaem-2-3-5


Phytoremediation is a novel technique that uses algae to clean up polluted water and soil. It takes advantage of the alga's natural ability to take up, accumulate and degrade the constituents that are present in their growth environment. Algae based waste water treatment systems offer more simple and economical technology as compared to the other environmental protection systems. Photosynthesis can be effectively exploited to generate oxygen from waste water remediation by algae. The choice of algae to be used in wastewater treatment is determined by their robustness against wastewater and by their efficiency to grow in and to take up nutrients from wastewater. By using Synechocystis salina almost 60% Cr, 66% Fe, 70% Ni, 77% Hg, 65% Ca2+, 63% Mg2+ and 78% of total hardness was reduced in 15 days of treatment.

contaminates dissolved phytoremediation pollution water

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 5


[1]  Laliberte, G., Proulx, D., De Pauw, N., La Noue, J., Algal technology in wastewater treatment. In: LC Rai, JP Gaur and CJ Soeder (eds.) Algae and Water Pollution. Adv. Limnol. 1994; 42: 283-302.
[2]  Oswald, W.J., Micro-algae and wastewater treatment. In: Borowitzka, M.A., Borowitzka, L.J. (Eds.), Micro-algal Biotechnology. Cambridge University Press, Cambridge, UK, 1998: 305-328.
[3]  Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., Marhaba, T.F., Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera”. Bioresour. Technol. 2006; 97: 2321-2329, 2006.
[4]  Yoshida, N., Ishii, K., Okuno. T., Tanaka, K., Purification and Characterization of Cadmium-Binding Protein from Unicelluar Algae Chlorella sorokinian. Current Microbiology, 2006; 52 (6): 460-463.
[5]  Sen, A.K., Bhattacharya, M., Studies of uptake and toxic effects of Ni on Salvinia natans. Water, Air and Soil Pollution, 1994; 78: 141-152.
[6]  Oswald, W.J. Microalgae and Wastewater Treatment. In: Microalgal Biotechnology, M.A. Borowitzka and L.J. Borowitzka (eds). Cambridge University Press, New York 1988 b; pp. 357-94.
[7]  Grobbelaar, J.U., Soeder, D.J. and Stengel, E. Modelling algal production in large outdoor cultures and waste treatment systems, Biomass 1990; 21:297-314.
[8]  Arceivala, S.J. Simple waste treatment methods. Metu Eng. Fac. Pub. 1973 No 44, Ankara.
[9]  Lovaie, A. and De La Noüe, J. Hyperconcentrated cultures of Scenedesmus obliquus: A new approach for wastewater biological tertiary treatment, Water Res 1985; 19: 1437-42.
[10]  Laliberte, G., Proulx, D., De Pauw, N. and De La Noüe, J.,. Algal Technology in Wastewater Treatment. In: H. Kausch and W. Lampert (eds.), Advances in Limnology. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart 1994; 283-382.
[11]  Filip, D.S., Peters, T., Adams, V.D. and Middlebrooks, E.J. Residual heavy metal removal by an algae-intermittent sand filtration system 1979. Water Res. 13: 305-313.
[12]  Nakajima, A., Horikoshi, T., and Sakaguchi, T. Studies on the accumulation heavy metal elements in biological system XVII. Selective accumilation of heavy metal ions by Chlorella vulgaris. Eur. J. App. Microbiol. Biotechnol. 1981; 12: 76-83.
[13]  Ting, Y.P., Lawson, E. and Prince, I.G. Uptake of cadmium and zinc by alga Chlorella vulgaris: Part I. İndividual ion species. Biotechnol. Bioeng. 1989; 34: 990-99.
[14]  Hassett, J.M., Jennett, J.C. and Smith, J.E.,. Microplate technique for determining accumulation of metals by algae. Appli. Environ. Microbiol 1981; 41: 1097-106.
[15]  Sakaguchi, T., Nakajima A. and Horikoshi, T. Studies on the accumulation heavy metal elements in biological system XVIII. Accumilation of molybdenum by green microalgae. Eur. J. App. Microbiol. Biotechnol. 1981; 12: 84-89.
[16]  Wikfors, G.H. and Ukeles, R. Growth and adaptation of estaurine unicellular algae in media with excess copper, cadmium and zink and effect of metal contaminated algal food on Crassostrea virginica larvae. Mar. Ecol. Prog. Ser. 1982; 7: 191-206.
[17]  APHA. “Standard methods for the examination of water and wastewater, 17th edition”, American Public Health Association, Washington, DC, 1989.
[18]  Aziz, M.A., Ng, W.J., Feasibility of wastewater treatment using the activated-algae process. Bioresource Technology, 2003; 40: 205-208.
[19]  Sreesai, S., Pakpain, P., Nutrient recycling by Chlorella vulgaris from the Bangkok city, Thailand. ScienceAsia, 2007; 33: 293-299.
[20]  Gonzalez, L.E., Canizares, R.O., Baena, S., Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus”. Bioresource Technology, 1997; 60: 259-262.
[21]  Weerawattanaphong, W., Nutrients reduction from Science Asia poultry wastewater by green algae: Chlorella vulgaris” (M.Sc. thesis in Environmental Technology). Bangkok Faculty of Graduated studies, Mahidol University, Thailand, 1998.
[22]  Olguin, E.J., Phytoremediation: key issue for cost effective nutrient removal process. Biotechnology Adv. 1992; 22: 81-91.
[23]  Sreesai, S., Asawasinsopon R., Satitvipawee P., Treatment and reuse of swine wastewater. Thammasat Intitude Journal of Science Technology, 2002; 7 (1): 13-19.
[24]  Bich, N.N., Yaziz, M.I., Kadir, N.A., Combination of Chlorella vulgaris and Eichhornia crassipes for wastewater nitrogen removal. Water Resource, 1999; 33: 2357-2362.