Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Journal of Applied & Environmental Microbiology. 2014, 2(3), 70-73
DOI: 10.12691/jaem-2-3-2
Open AccessArticle

Optimization and Production of α -Amylase from Halophilic Bacillus Species Isolated from Mangrove Soil Sources

M. Kanimozhi1, Midhusha Johny1, N. Gayathri2 and R. Subashkumar1,

1PG and Research Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore, TN, India

2Department of Biotechnology, Dr. R. V. Arts and Science College, Karamadai, Coimbatore, TN, India

Pub. Date: March 22, 2014

Cite this paper:
M. Kanimozhi, Midhusha Johny, N. Gayathri and R. Subashkumar. Optimization and Production of α -Amylase from Halophilic Bacillus Species Isolated from Mangrove Soil Sources. Journal of Applied & Environmental Microbiology. 2014; 2(3):70-73. doi: 10.12691/jaem-2-3-2


In the present study, four bacterial isolates from a mangrove soil were screened for their ability to produce α-amylase using submerged fermentation. Bacillus MJK1, MJK2, MJK6 and MJK10 which were assigned to be Bacillus species proved to be the best α- amylase producer. Various effects of pH, temperature, incubation time, carbon source and salinity were checked. Different carbon supplements were used to enhance the enzyme production and the highest yield was obtained with 2% soluble starch as supplements. The presence of fructose, maltose, sucrose, glucose reduced the production of amylase. The optimum pH, temperature, and incubation period for amylase production by the isolate was found to be 8.0, 50°C and 72 hrs respectively. The production medium with increase in addition of NaCl, diminished the production of amylase. The presence of NaCl in the culture media promoted extracellular amylase even in the presence of 4% NaCl.

α- amylases Bacillus mangrove soil rhizosphere

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Omemu, A. M., Akpan, I, Bankole M. O. and Teniola O. D. (2005). Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. African J. Biotechnol. 4 (1): 19-25.
[2]  Bhanja, T., Rout, S., Banerjee R. and Bhattacharya, B.C. (2007). Comparative profiles of α-amylase production in conventional tray reactor and GROWTEK bioreactor. Bioprocess Biosyst. Eng. 30: 369-376.
[3]  Leman, P., Goesaert, H. and Delcour, J. A. (2009). Residual amylopectin structures of amylase treated wheat slurries reflect amylase mode of action. Food Hydrocolloids, 23(1): 153-164.
[4]  Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D. and Mohan, R. (2000). Advances in microbial amylases. J. Biotechnol. Appl. Biochem. 31: 135-152.
[5]  Konsoula, Z. and Kyriakides, M. L. (2007). Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. J. Biores. Technol. 98: 150-157.
[6]  Asgher, M., Asad, M. J., Rahman, S. U. and Legge, R. L. (2007). A thermostable α -amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950-955.
[7]  Tanyildizi, M. S., Ozer, D. and Elibol, M. (2005). Optimization of α –amylase production by Bacillus sp. using response surface methodology. J. Proc. Biochem. 40: 2291-2296.
[8]  Liang, S., Zhou, R., Dong, S. and Shi, S. (2008). Adaptation to salinity in mangroves: Implication on the evolution of salt tolerance. Sci. Bullet. 53: 1708-1715.
[9]  Dahdouh-Guebas, F., Cairo, J. G., Bondt, R. D. and Koedam, N. (2007). Pneumatophore height and density in relation to micro-topography in the grey mangrove Avicennia marina. J. Bot. 140: 213-221.
[10]  Gurudeeban, S., Satyavani, K. and Ramanathan, T. (2011). Production of extra cellular α-amylase using Bacillus megaterium isolated from white mangrove (Avicennia marina). Asian J. Biotechnol. 3 (3): 310-316.
[11]  Arikan, B. (2008). Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Biores. Technol. 99: 3071–3076.
[12]  Bernfeld, P. (1955). Amylases: alpha and beta methods. Enzymol. 1: 149-158.
[13]  Vijayalakshmi, A., Sushma, K., Abha, S. and Chander, P. (2012). Isolation and Characterization of Bacillus subtilis KC3 for amylolytic activity. Int. J. Biosci. Biochem. Bioinf. 2( 5): 234-239
[14]  Kikani, B. A. and Singh, S. P. (2012). The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. J. Process Biochem. 8: 1359-5113.
[15]  Pancha, I., Jain, D., Shrivastav, A., Mishra, S. K., Shethia, B., Mishrab, S., Mohandasa, V. P. and Jhab, B. (2012). A thermoactive amylase from a Bacillus sp. isolated from CSMCRI salt farm. Int. J. Biol. Macromol. 47: 288-291.
[16]  Lin, L. L., Chyau, C. C. and Hsu, W. H. (1998). Production and properties of a raw starch-degrading amylase from the thermophilic and alkalophilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem. 28: 61-68.
[17]  Yang, H., Liu, L., Li, J., Du G. and Chen, J. (2011). Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis. J. Microb. Cell Factories, 10: 77-85.
[18]  Bozic, N., Ruiz, J., Santin, J. L. and Vujcic, Z. (2011). Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. J. Biochem. Eng. 53: 203-209.
[19]  Srivastava, R. A. K. and Baruah, J. N. (1986). Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Appl. Environ. Microbiol. 52: 179-184.
[20]  Saxena, R. K., B. Malhotra and Batra, A. (2004). Commercial importance of some fungal enzymes. In: Arora. J. Biotechnol. 287-298.
[21]  Suganthi, R., Benazir, J. F., Santhi, R., Ramesh Kumar, V., Hari, A., Meenakshi, N., Nidhiya, K. A., Kavitha, G. and Lakshmi, R. (2011). Amylase production by Aspergillus niger under solid state fermentation using agro-industrial wastes. Int. J. Eng. Sci. Technol. 3: 1756-1763.
[22]  Haq, I., Ashraf, H., Ali, S. and Qadeer, M.A. (1997). Submerged fermentation of alpha amylase by Bacillus licheniformis GCB 36. J. Biol. Sci. 37: 39-45.
[23]  Kelly, C. T., Tigue, M. A., Doyle, E. M. and Fogarty, W. M. (1997). Raw starch degrading alkaline amylase of Bacillus sp. J. Ind. Microbiol. 15: 446-448.
[24]  Hillier, P., Wase, D. A. J., Emery, A. N. and Solomons, G. L. (1997). Instability of α-amylase production and morphological variation in continuous culture of Bacillus amyloliquefaciens is associated with plasmid loss. J. Process Biochem. 32: 51-59.
[25]  Burhan, A., Nisa, U., Gokhan, C., Omer, C., Ashabil, A. and Osman, G. (2003). Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. J. Process Biochem. 38: 1397-1403.
[26]  Roy, J. K., Rai, S. K. and Mukherjee, A. K. (2012). Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-S01a. Int. J. Biol. Macromol. 50: 219-229.
[27]  Kathiresan, K. and Manivannan, S. (2006). α-amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr. J. Biotechnol. 5: 829-832.