Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: http://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2014, 2(2), 37-41
DOI: 10.12691/jaem-2-2-1
Open AccessArticle

Bovine Serum Albumin a Potential Thermostabilizer: a Study on α-Amylase

Vijay Kishore1, , Sangeetha Gowda K. R.2, Swati Krishna1, Kusha Sharma1, Rashmi M.1 and Nishita K. P.3

1Department of Biotechnology, Sapthagiri College of Engineering, Bangalore 560 057, India

2Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577 451, India

3Fermentation Technology and Bio-Engineering Department, CFTRI, Mysore 570 020, India

Pub. Date: February 20, 2014

Cite this paper:
Vijay Kishore, Sangeetha Gowda K. R., Swati Krishna, Kusha Sharma, Rashmi M. and Nishita K. P.. Bovine Serum Albumin a Potential Thermostabilizer: a Study on α-Amylase. Journal of Applied & Environmental Microbiology. 2014; 2(2):37-41. doi: 10.12691/jaem-2-2-1

Abstract

Bovine serum albumin (BSA) as a modifier was used with glutaraldehyde as a binder to study the activity and thermal stability of α-amylase. The optimum temperature of the enzyme was found to be 50C ± 2C. Further increase in temperature resulted in irreversible thermal inactivation of the enzyme. On modification of the enzyme with BSA, the rate of thermal inactivation was found to be significantly reduced. BSA modified α-amylase was found to retain its activity at 80C even after 3 h of incubation. The apparent thermal inactivation energy (Ed) of α-amylase was found to be significantly increased on modification with BSA. The half-life of BSA modified α-amylase at both 70C and 80C was found to be 2.5 times higher than the native α-amylase. Thermodynamic parameters, ΔH, ΔS and ΔG, were determined as a function of temperature. The kinetic constants Km and Vmax, using starch as substrate, were determined to study the effect of BSA conjugation on α-amylase.

Keywords:
bovine serum albumin α-amylase half-life modification thermal inactivation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Jay Kant, Y. and V. Prakash, “Thermal stability of α-amylase in aqueous cosolvent systems”, J. Biosci. 34: 377-387, 2009.
 
[2]  Ikram-Ul-Haq, M. J. Muhammad; H. Uzma, and A. Fazal, “Solid state fermentation for the production of α-amylase by Paenibacillus amylolyticus”, Pak. J. Bot. 42: 3507-3516, 2010.
 
[3]  Sangeeta, N. and B. Rintu, “Optimization of culture parameters to enhance production of amylase and protease from Aspergillus awamori in a Single Fermentation System”, Afr. J. Biochem. Res. 4: 73-80, 2010.
 
[4]  Azadeh, E. H., K. Khosro, and N. G. Mohsen, “Chemical modification of lysine residues in Bacillus licheniformis α-amylase: Conversion of an Endo- to an Exo-type enzyme”, J. Biochem. Mol. Biol. 37: 642-647, 2004.
 
[5]  Zentgraf, B. and M. Ringpfeil, “Practical importance of enzyme stability - I: Natural sources of more stable enzymes; II: Increase of enzyme stability by immobilization and treatment with low molecular weight reagents; III: Increase of enzyme stability by protein engineering”, Pure Appl. Chem. 63: 1527-1540, 1991.
 
[6]  Shenoy, B. C., A. G. Appu Rao, and M. R. Raghavendra Rao, “Effect of chemical modification on structure and activity of glucoamylase from Aspergillus candidus and Rhizopus species”, J. Biosci. 11: 339-350, 1987.
 
[7]  Swetha, S., G. Dhanya, M. N. Kesavan, R. S. Carlos, and P. Ashok, “α-Amylases from Microbial sources - An overview on Recent Developments”, Food Technol. Biotechnol. 44: 173-184, 2006.
 
[8]  Yadav, J. K. and V. Prakash, “Thermal stability of α-amylase in aqueous cosolvent systems”, J. Biosci. 34: 377-387, 2009.
 
[9]  Emmanuel, B., J. Nicolas, and P. Mathieu, “Protein chemical modification on endogenous amino acids”, Chem. Biol. 17: 213-227, 2010.
 
[10]  Simone, B., H. S. Michael, Y. Bin, and E. W. Charles, “The effect of Bovine serum albumin on cellulose hydrolysis under different reaction conditions”, Biores. Technol. 102: 6295-6298, 2011.
 
[11]  Patcharin, R., T. Juming, and A. R. Barbara, “Thermal stability of α-amylase from Aspergillus oryzae entrapped in polyacrylamide gel”, J. Agri. Food Chem. 51: 5462-5466, 2003.
 
[12]  Phillip, J. B. and T. W. Martin, “Effect of additives on the thermostability of Bacillus stearothermophilus α-amylase”, Biotechnol. Lett. 11: 541-544, 1989.
 
[13]  Michihiro, S., T. Michiyo, and Y. Katsuhide, “Effect of Heavy atoms on the thermal stability of α-amylase from Aspergillus oryzae”, Plos One. 8(2): e57432.journal.pone.0057432, 2013.
 
[14]  Ali A. S., “Stability, activity and binding properties study of α-amylase upon interaction with Ca2+ and Co2+ ”, Biologia, Bratislava. 57: 221-228, 2002.
 
[15]  Foster, J. F., “Some aspects of the structure and conformational properties of serum albumin, in Albumin Structure, Functions and Uses”, edited by Rosenoer, V.M.; Oratz, M.; Rothschild, M.A., Oxford, Pergamon Press, pp. 53-84, 1977.
 
[16]  Bernfeld, P., “Amylase, α and β”, Meth. Enzymol. 1: 149-158, 1955.
 
[17]  Zhang, Y. Q., W. L. Zhou, W. D. Shen, Y. H. Chen, X. M. Zha, K. Shirai, and K. Kiguchi, “Synthesis, characterization and immunogenicity of silk fibroin-I-asparaginase bioconjugates”, J. Biotechnol. 120: 315-326, 2005.
 
[18]  Lineweaver, H. and D. Burk, “The determination of enzyme dissociation constant”, J. Amer. Chem. Soc. 56: 658–666, 1934.
 
[19]  Tari, C., N. Dogan, N. Gogus, “Biochemical and thermal characterization of exo-polygalacturonase produced by Aspergillus sojae”, Food Chem. 111: 824-829, 2008.
 
[20]  Shuler, M. L. and F. Kargi, “Bioprocess Engineering: Basic Concepts”, Prentice Hall, 2002.
 
[21]  Naidu, G. S. N. and T. Panda, “Studies on pH and thermal deactivation of pectolytic enzymes from Aspergillus niger”, Biochem. Eng. J. 16: 57-67, 2003.
 
[22]  Mudeppa, D. G., A. S. Sridevi, A. G. AppuRao, S. T. Munna, and G. K. Naikankatte, “Thermal inactivation of Glucose oxidase”, J. Biol. Chem. 278: 24324-24333, 2003.
 
[23]  Bhatti, H. N., M. Asgher, A. Abbas, R. Nawaz, and M. A. Sheikh, “Studies on kinetics and thermostability of a novel acid invertase from Fusarium solani”, J. Agric. Food. Chem. 54: 4617-4623, 2006.
 
[24]  Georis, J., F. L. Esteves, J. L. Brasscur, V. Bougnet, J. L. B. Devreese, F. Giannotta, “An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study”, Protein Sci. 9: 466-475, 2000.
 
[25]  Dogan, N. and C. Tari, “Characterization of three-phase partitioned exo-polygalacturonase from Aspergillus sojae with unique properties”, Biochem. Eng. J. 39: 43-50, 2008.