Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: http://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2019, 7(1), 25-37
DOI: 10.12691/jaem-7-1-5
Open AccessArticle

Antibiotic Resistant Pathogenic Bacteria Isolated from Aquaculture Systems in Bungoma County, Kenya

D. M. Mukwabi1, , P. O. Okemo2, S. A. Otieno3, R. O. Oduor2 and Z. W. Okwany4

1Fish Quality Assurance, Kenya Fisheries Service, Nairobi, Kenya

2Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya

3Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya

4Biodiversity and Genetic Laboratory, National Museums of Kenya, Nairobi, Kenya

Pub. Date: November 10, 2019

Cite this paper:
D. M. Mukwabi, P. O. Okemo, S. A. Otieno, R. O. Oduor and Z. W. Okwany. Antibiotic Resistant Pathogenic Bacteria Isolated from Aquaculture Systems in Bungoma County, Kenya. Journal of Applied & Environmental Microbiology. 2019; 7(1):25-37. doi: 10.12691/jaem-7-1-5

Abstract

Aquaculture production in Kenya has been growing exponentially as a Government initiative to meet population nutritional requirements and food security. Unfortunately factors exist such as fish infection and disease that work against the health and survival of fish in aquaculture. This study focused on identifying bacterial pathogens present in aquaculture systems in Bungoma County and determined how the pathogens respond to commonly used antimicrobial agents. During the study, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas hydrophila and Pseudomonas aeruginosa were recovered from farmed Nile tilapia while Aeromonas hydrophila and Streptococcus iniae were isolated from fish source pond water and fish feeds respectively. Among the bacterial isolates from Nile tilapia, Vibrio vulnificus and Aeromonas hydrophila were resistant to ampicillin while Vibrio parahaemolyticus and Pseudomonas aeruginosa were resistant to cefuroxime and ampicillin. Aeromonas hydrophila recovered from pond water were found to be resistant to both ampicillin and cefuroxime whereas, Streptococcus iniae isolated from fish feeds were observed to be resistant to ceftazidime, cefepime and nalidixic acid, which is a warning that unless we find alternative antimicrobial agents the aquaculture industry is likely to collapse. When the bacterial isolates were subjected to PCR, all five bacterial pathogens isolated from fish, pond water and fish feeds were found to contain blaTEM gene amplified at 424bp.

Keywords:
antibacterial agents fish diseases vibrio aeromonas pseudomonas and streptococcus molecular analysis and blaTEM gene

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 17

References:

[1]  Yang, J. F., Ying, G. G., Zhao, J. L., Tao, R., Su, H. C. and Chen, F, Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. Science Total Environment, 408:3424-3432, March. 2010.
 
[2]  Tamtam, F., Mercier, F., Le Bot, B., Eurin, J., Tuc Dinh, Q., Clément, M and Chevreuil, M, Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Science Total Environment, 393:84-95, 2008
 
[3]  Boxall, A. B. A., Blackwell, P. A., Cavallo, R., Kay, P. and Tolls, J, The sorption and transport of a sulfonamide antibiotic in soil system. Toxicology Letters, 131:19-28. 2002.
 
[4]  Shaw, K. S., Rosenberg, G. R. E., He, X., Jacobs, J. M., Crump, B. C. and Sapkota, A. R, Antimicrobial susceptibility of Vibrio vulnificus and Vibrio parahaemolyticus recovered from recreational and commercial areas of Cheaspeake Bay and Maryland coastal bay. PLoS ONE, 9: 89616, 2014.
 
[5]  Daniels, N. A., MacKinnon, L., Bishop, R., Alterkruse, S., Ray, B. and Hammond, R. M, Vibrio parahaemolyticus infection in the United States, 1973-1998. Journal of Infectious Diseases, 181: 1661-1666, 2000.
 
[6]  Andrews, J. M, Determination of minimum inhibitory concentration. Journal of Antimicrobial Agents and Chemotherapy, 48(1): 5-16, 2001.
 
[7]  CLSI, Antibacterial Susceptibility Testing Standards Guidelines, Order# 26372, 2013.
 
[8]  Truong, T. H., Nontawith, A., Prapansak, S. and Songsri, M, Identification and Antibiotic sensitivity test of the Bacteria isolated from Tra catfish (Pangasianodon hypoththalmus, Sauvage 1878) cultured in pond in Vietnam. Kasetsart Journal of Natural Science, 42:54-60, 2008.
 
[9]  Kathleen, M. M., Samuel, L., Felecia, C., Reagan, E. L., Kasing, A., Lesley, M. and Toh, S. C, Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo. International Journal of Microbiology, Article ID 2164761, 2016.
 
[10]  Lim, M. H. and A. Kasing, A, Antimicrobial susceptibilities of Vibrio parahaemolyticus isolates from tiger shrimps (Penaeus monodon) aquaculture in Kuching, Sarawak. Research Journal of Microbiology, 8(1):55-62, 2013.
 
[11]  Shariff, M., Nagaraj, G., Chua, F. H. C. and Wang, Y. G, The use of chemicals in aquaculture in Malaysia and Singapore, in Use of Chemicals in Aquaculture in Asia, J. R. Arthur, C. R. Lavilla Pitogo, and R. P. Subasinghe, Eds. Southeast Asian Fisheries Development Centre, Aquaculture Department, Iloilo, Philippines, 127-140, 2000.
 
[12]  Ginovyan, M., Hovsepyan, V., Sargsyan, M., Grigoryan, K. and Trchounian, A, Antibiotic resistance of Pseudomonas species isolated from Armenian fish farms. Proceedings of the All-Union Research Institute of Marine Fisheries and Oceanography, 167:163-173, 2017.
 
[13]  Álvarez, R. J. D., Agurto, C. P., Álvarez, A. M. and Obregón, J. (2004). Resistência ntimicrobiana en bactérias aisladas de tilápias, agua y sedimento em Venezuela. Revista Científica, FCV-LUZ, XIV (6):491-499, 2004.
 
[14]  Thiele-Bruhn, S, Pharmaceutical antibiotic compounds in soils: A review. Journal of Plant Nutrition and Soil Science, 166: 145-167, 2003.
 
[15]  Han, F., Walker, R. D., Janes, M. E., Prinyawiwatkul, W. and Ge, B, Antimicrobial susceptibilities of Vibrio parahaemolyticus and Vibrio vulnificus isolates from Louisiana Gulf and retail raw oysters. Applied Environmental Microbiology, 73: 7096-7098, 2007.
 
[16]  Nadja, B., Keike, S., Beatriz, G. and Eckhard, S. (2015). Survey on antimicrobial resistance patterns in Vibrio vulnificus and Vibrio cholerae non-01/ non-0139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters. Front Microbiology, 6: 1179, 2015.
 
[17]  Jun, J. W., Kim, J. H., Choresca, C. H., Shin, S. P., Han, J. E. and Han, S. Y, Isolation, molecular characterization and antibiotic susceptibility of Vibrio parahaemolyticus in Korean seafood. Foodborne Pathological Diseases, 9:224-231, 2012.
 
[18]  Letchumanan, V., Pusparajah, P., Tan, LT-H, Yin, W-F., Lee, L-H. and Chan, K-G, Occurrence and Antibiotic Resistance of Vibrio parahaemolyticus from shellfish in Selangor, Malaysia. Front Microbiology, 6:1417, 2015.
 
[19]  Aravena-Roman, M., Inglis, T. J. J., Henderson, B., Riley, T. V., and Chang, B. J, Antimicrobial susceptibility of Aeromonas strains isolated from clinical and environmental sources to 26 antimicrobial agants. Journal of American Society For Microbiology, 8:05387-11, 2011.
 
[20]  Olumide, A. O. and Asmat, A, Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi Journal of Biological Science, 24:65-70, 2017.
 
[21]  Okoh, A. I. and Igbinosa, I. H, Antibiotic susceptibility profile of Aeromonas species isolated from wastewater treatment plant. The Science World Journal, 764563: 1-6, 2012.
 
[22]  Njeru, S. N., Kiruki, S., Limo, M., Mbala, M. J., Njagi, E. N. M., Okemo, P. O. and Lawless, N, Antimicrobial resistance and plasmid profiles of Aeromonas hydrophila isolated from River Njoro, Kenya. African Journal of Biotechnology, 11 (96): 16284-16290, 2012.
 
[23]  Park, Y. K., Nho, S. W., Shin, G. W., Park, S. B., Jang, H. B., Cha, I. S., Ha, M. A., Kim, Y. R., Dalvi, R. S., Kang, B. J. and Jung, T. S, Antibiotic Susceptibility and resistance of Streptococcus iniae and Streptococcus paraubesis isolated from Olive flounder (Paralichthys olivaleus). Veterinary Microbiology, 136(1-2): 76-81, 2009.
 
[24]  Wright, D. G, The antibiotic resistance: the nexus of chemical and genetic diversity. Nature Revision Microbiology, 5: 175-186, 2007.
 
[25]  Agersø, Y and Sandvang, D, Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Applied and Environmental Microbiology, 71(12):7941-7947, 2005.
 
[26]  Livermore, D. M, β-lactamases in laboratory and clinical resistance. Clinical Microbiology Review, 8(4): 557-584, 1995.
 
[27]  Ko, C. W., Yu, K. W., Liu, C. Y., Huang, C. T., Leu, H. S. and Chuang, C. Y, Increasing antibiotic resistance in clinical isolates from clinical and environmental sources. Antimicrobial Agents and Chemotherapy, 40: 1260-1262, 1996.
 
[28]  Bharti, N. M. and Sharma, P. C. (2016). Molecular characterization of Pseudomonas aeruginosa isolates recovered from human patients in Himachal Pradesh (India) for selective genes: Extended spectrum β-lactamase (ESBL), Ampicillin class C (AmpC) and metallo β-lactamase (MBL) genes. International Journal of Pharmaceutical Science and Research, 7(12): 4905-49-16, 2016.
 
[29]  Padmakrishnan, R. A., Murugan, T. and Devi, M. P. R, Studies on multidrug resistant Pseudomonas aeruginosa from pediatric population with special reference to extended spectrum beta - lactamase. Indian Journal of Science and Technology, 2: 11-13, 2009.
 
[30]  El-Salabi, A. Walsh, T. R. and Choichanic, C, Extended-Spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Critical Revision in Microbiology, 39(2): 113-122, 2012.
 
[31]  Yusha’u, M., Aliyu, H. M., Kununya, A. S., and Suleiman, K, Prevalence of extended spectrum β- lactamases (ESBLs) among Enterobacteriaceae in Murtala Mohammed Specialist hospital, Kano, Nigeria. Bayero Journal of Pure and Applied Science, 3:169-172, 2010.
 
[32]  Hanson, D. N., Thomson, K. S., Moland, E. N., Sanders, C. C., Berthold, G. and Penn, G. P, Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid mediated AmpC. Journal of Antimicrobial Chemotherapy, 44: 377-380, 1999.
 
[33]  Aoki, T, Chemotherapy and drug resistance in fish farms in Japan. In: M. Sharrif, R. P. Subasinghe, J. R. Authur (Eds.), Diseases in Asian Aquaculture I, Fish Health Section, Asian Fishery Policy Society, Manila, 519-524, 1992.
 
[34]  Mesa, G. L., Mori, A. R., Becerra, L. N., Morffi, F. J., Hernandez, E. R., Alvarez, A. B., Marchena, B. J. J., Gonzalez, A. M. and Villain, C. P, Phenotypic and molecular identification of extended spectrum β-lactamase (ESBL) TEM and SHV produced by clinical isolates Escherichia coli and Klebsiella spp. in hospitals. Revista Cuban de medicina Tropica, 59(1): 52-58, 2007.
 
[35]  Palzkill, T. and Botstein, D, Identification of amino acid substitutions that alter the substrate specificity of TEM-1 β-lactamase. Journal of Bacteriology, 174(16): 5237-5243, 1992.
 
[36]  Mukwabi, D. M., Okemo, P. O., Otieno, S. O., Oduor, R. O. and Macharia, C. M, Temperature and ph influence on bacterial pathogens infecting farmed Nile tilapia in aquaculture systems in Bungoma County, Kenya. International Journal of Fisheries and Aquatic Studies, 7(1): 190-197, 2019.
 
[37]  Fatma-Azzahra, D., Adnan, S. J., Al-Tarazi, Y., Hani, M. and Omar, Z, Characterization of Ampicillin Resistant Gene (blaTEM-1) isolated from E. coli in Northern Jordan. Asian Journal of Biomedical and Pharmaceutical Science, 7(61): 11-15, 2017.
 
[38]  Mai, A. M. El-S., Nevien, K. M. A., Ahmed M. M. El-A. and Viola, H. Z, Phenotypic and biochemical detection of Aeromonas hydrophila isolated from cultured Oreochromis niloticus during disease outbreaks. International Journal of Fisheries and Aquatic Studies, 7(3): 197-202, 2019
 
[39]  Abdullahi, R., Lihan, S., Carlos, S. B., Bilung, L. M., Mikal, K. M. and Collick, F, Detection of oprL gene and antibiotic resistance of Pseudomonas aeruginosa from aquaculture environment. European Journal of Experimental Biology, 3:148-152, 2013.
 
[40]  Son, R., Rusul, G., Sahilah, A. M., Zainuri, A., Raha, A. R. and I. Salmah, I, Antibiotic resistance and plasmid profile of Aeromonas hydrophila isolates from cultured fish, Telapia (Telapia mossambica). Letters in Applied Microbiology, 24(6): 479-482, 1997.
 
[41]  Balsalobre, L. C., Dropa, M., De-Oliveira, D. E., Lincopan, N., Mamizuka, E. M., Matte, G. R. and Matte, M. H, Presence of bla TEM-116 gene in environmental isolates of Aeromonas hydrophila and Aeromonas jandaei from Brazil. Brazilian Journal of Microbiology, 41: 718-719, 2010.
 
[42]  Fosse T, Giraud-Morin, C., Madinier, I., Mantoux, F., Lacour, J. P. and Ortonne, J. P, Aeromonas hydrophila with plasmid-borne class A extended-spectrum beta-lactamase TEM-24 and three chromosomal class B, C, and D beta-lactamases, isolated from a patient with necrotizing fasciitis. Antimicrobial Agents and Chemotherapy, 48:2342-2344, 2004.
 
[43]  Goni-Urriza, M., Arpin, C., Michèle, C., Véronique, D., Pierre, C. and Claudine. Q, Type II topoisomerase quinolone resistance-determining regions of Aeromonas caviae, A. hydrophila, and A. sobria complexes and mutations associated with quinolone resistance. Antimicrobial Agents and Chemotherapy, 46(2): 350-359, 2002.
 
[44]  Arpin, C., Labia, R., Dubois, V., Noury, P., Souquet, M., and Quentin, C, TEM-80, a novel inhibitor-resistant β-lactamase in a clinical isolate of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 46:1183-1189, 2002.
 
[45]  Jog, A. S., Shadija, P. G. and Ghosh, S. J, Detection of multidrug resistant Gram negative bacilli in type II diabetic foot infections. International Journal of Medical and Health Sciences, 2:186-94, 2013.