Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Journal of Applied & Environmental Microbiology. 2019, 7(1), 9-19
DOI: 10.12691/jaem-7-1-3
Open AccessArticle

Evaluation of Technological and Probiotic Abilities of Local Lactic Acid Bacteria

Lesly Samedi1 and Albert Linton Charles1,

1Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912 01, Taiwan

Pub. Date: April 23, 2019

Cite this paper:
Lesly Samedi and Albert Linton Charles. Evaluation of Technological and Probiotic Abilities of Local Lactic Acid Bacteria. Journal of Applied & Environmental Microbiology. 2019; 7(1):9-19. doi: 10.12691/jaem-7-1-3


The definition of probiotics has been the topic of much discussion and the most recent definition from FAO/WHO stipulates that probiotics are “live microorganisms, administered in adequate amounts, confer a health benefit on the host”. Dairy products remain one of the most important sources of lactic acid bacteria. Today, these kinds of bacteria are of increasing interest as they are considered functional foods when combined with lactic acid bacteria. The identification and classification of isolates made difficult the research, since the benefits should only be pertinent to specific isolates. However, bacteria strains have a certain number of potential and well-established benefits. They may play a role in preventing and treating diarrhea and act on the immune system, improve lactose digestion, help the body to resist, and fight infection. Further researches need to be conducted to confirm the roles that lactic acid bacteria may play in antitumor effects, hyper cholesterol effects, preventing urogenital infections, alleviating constipation, and treating food allergies. In addition to food shelf-life and safety, consumers are showing interest in the relationship and bioactive roles of “functional foods’ in preventing or managing non-transmissible chronic diseases. Since then, increased demand for non-dairy probiotic products has come from vegetarianism, milk cholesterol content, and lactose intolerance. Therefore, the establishment of the probiotic functional characteristics of isolated strains must be a key factor in the search for probiotic microorganisms and their inclusion in the food product design. This review presents a basic overview of the evaluation of technological and probiotic abilities of lactic acid bacteria strains and the determination of their probiotic properties.

lactic acid bacteria microflora non-dairy products anti-oxidative properties lactobacillus probiotics

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Cavadini C., Ballevre O., Gaier W. (1999). Pet food product containing probiotics, Google Patents.
[2]  Fuller R. (1989). Probiotics in man and animals. The Journal of applied bacteriology 66: 365-378.
[3]  Linskens R., Huijsdens X., Savelkoul P., Vandenbroucke-Grauls C., Meuwissen S. (2001). The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scandinavian Journal of Gastroenterology 36: 29-40.
[4]  Reuter G. (2001). Probiotics--possibilities and limitations of their application in food, animal feed, and in pharmaceutical preparations for men and animals. Berliner und Munchener Tierarztliche Wochenschrift 114: 410-419.
[5]  Fuller R. (1991). Probiotics in human medicine. Gut 32: 439.
[6]  Parvez S., Malik K.A., Ah Kang S., Kim H.Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of applied microbiology 100: 1171-1185.
[7]  Salminen S., Ouwehand A., Benno Y., Lee Y. (1999). Probiotics: how should they be defined? Trends in food science & technology 10: 107-110.
[8]  Abbassiliasi S. (2014). Optimization of Bacteriocin-like Inhibitory Substance Production by Pediococcus Acidilactici Kp10 for Use as Food Preservative, Universiti Putra Malaysia.
[9]  Mattila-Sandholm T., Myllärinen P., Crittenden R., Mogensen G., Fondén R., Saarela M. (2002). Technological challenges for future probiotic foods. International Dairy Journal 12: 173-182.
[10]  Vaughan E.E., Mollet B. (1999). Functionality of probiotics and intestinal lactobacilli: light in the intestinal tract tunnel. Current Opinion in Biotechnology 10: 505-510.
[11]  Ouwehand A., Isolauri E., Salminen S. (2002a). The role of the intestinal microflora for the development of the immune system in early childhood. European journal of nutrition 41: i32-i37.
[12]  Tekeli A., Celik L., Kutlu H., Gorgulu M. (2006). Effect of dietary supplemental plant extracts on performance, carcass characteristics, digestive system development, intestinal microflora and some blood parameters of broiler chicks, Proceedings of 12th European Poultry Conference. pp. 10-14.
[13]  Ganguly S., Prasad A. (2012). Microflora in fish digestive tract plays significant role in digestion and metabolism. Reviews in fish biology and fisheries 22: 11-16.
[14]  Yen J.T. (2001). Digestive system, Cornell University Press: Ithaca, London. pp. -.
[15]  Benno Y., Sawada K., Mitsuoka T. (1984). The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiology and immunology 28: 975-986.
[16]  Fanaro S., Chierici R., Guerrini P., Vigi V. (2003). Intestinal microflora in early infancy: composition and development. Acta paediatrica 92: 48-55.
[17]  Penders J., Thijs C., Vink C., Stelma F.F., Snijders B., Kummeling I., van den Brandt P.A., Stobberingh E.E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511-521.
[18]  Gatesoupe F. (1999). The use of probiotics in aquaculture. Aquaculture 180: 147-165.
[19]  Kabir S. (2009). The role of probiotics in the poultry industry. International Journal of Molecular Sciences 10: 3531-3546.
[20]  Sanders M.E. (2008). Probiotics: definition, sources, selection, and uses. Clinical Infectious Diseases 46: S58-S61.
[21]  Carter G. (1990). Isolation and identification of bacteria from clinical specimens, Diagnostic Procedure in Veterinary Bacteriology and Mycology, Elsevier. pp. 19-39.
[22]  Di Venere D., Gatto M.A., Ippolito A., Bianco V.V. (2016). Antimicrobial potential of wild edible herbaceous species, Mediterranean Wild Edible Plants, Springer. pp. 233-252.
[23]  Von Graevenitz A. (1977). The role of opportunistic bacteria in human disease. Annual review of microbiology 31: 447-471.
[24]  Hartemink R., Domenech V., Rombouts F. (1997). LAMVAB—a new selective medium for the isolation of lactobacilli from faeces. Journal of microbiological methods 29: 77-84.
[25]  Rolfe R.D., Helebian S., Finegold S.M. (1981). Bacterial interference between Clostridium difficile and normal fecal flora. Journal of infectious Diseases 143: 470-475.
[26]  Silva M., Jacobus N., Deneke C., Gorbach S. (1987). Antimicrobial substance from a human Lactobacillus strain. Antimicrobial agents and chemotherapy 31: 1231-1233.
[27]  Lindgren S.E., Dobrogosz W.J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS microbiology reviews 7: 149-163.
[28]  Toba T., Samant S., Yoshioka E., Itoh T. (1991). Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6. Letters in Applied Microbiology 13: 281-286.
[29]  De Buyser M.-L., Dufour B., Maire M., Lafarge V. (2001). Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. International journal of food microbiology 67: 1-17.
[30]  Nakamura L.I. (2001). What is the US Gross Investment in Intangibles?: (at Least) One Trillion Dollars a Year! Economic Research Division, Federal Reserve Bank of Philadelphia.
[31]  Pimentel D., Zuniga R., Morrison D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological economics 52: 273-288.
[32]  Wilcock A., Pun M., Khanona J., Aung M. (2004). Consumer attitudes, knowledge and behaviour: a review of food safety issues. Trends in Food Science & Technology 15: 56-66.
[33]  Casey P.G., Gardiner G.E., Casey G., Bradshaw B., Lawlor P.G., Lynch P.B., Leonard F.C., Stanton C., Ross R.P., Fitzgerald G.F. (2007). A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 73: 1858-1863.
[34]  Gaggìa F., Mattarelli P., Biavati B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International journal of food microbiology 141: S15-S28.
[35]  Muralidhara K., Sheggeby G., Elliker P., England D., Sandine W. (1977). Effect of feeding lactobacilli on the coliform and lactobacillus flora of intestinal tissue and feces from piglets. Journal of Food Protection 40: 288-295.
[36]  Brooker B., Fuller R. (1975). Adhesion of lactobacilli to the chicken crop epithelium. Journal of ultrastructure research 52: 21-31.
[37]  Di Gioia D., Aloisio I., Mazzola G., Biavati B. (2014). Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Applied microbiology and biotechnology 98: 563-577.
[38]  Kaur I.P., Chopra K., Saini A. (2002). Probiotics: potential pharmaceutical applications. European Journal of Pharmaceutical Sciences 15: 1-9.
[39]  Anal A.K., Singh H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in food science & technology 18: 240-251.
[40]  Goldin B., Gorbach S. (2008). Clinical indications for probiotics: an overview. Clinical Infectious Diseases 46: S96-S100.
[41]  Khan R., Naz S. (2013). The applications of probiotics in poultry production. World's Poultry Science Journal 69: 621-632.
[42]  Tournut J. (1989). Applications of probiotics to animal husbandry. Rev. sci. tech. Off. int. Epiz 8: 551-556.
[43]  Hafez E.S.E., Hafez B. (2013). Reproduction in farm animals John Wiley & Sons.
[44]  Ezema C. (2013). Probiotics in animal production: A review. Journal of Veterinary Medicine and Animal Health 5: 308-316.
[45]  Guo F., Williams B., Kwakkel R., Li H., Li X., Luo J., Li W., Verstegen M. (2004). Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poultry science 83: 175-182.
[46]  Havenaar R., Huis J.H. (1992). Probiotics: a general view, The Lactic Acid Bacteria Volume 1, Springer. pp. 151-170.
[47]  Smoragiewicz W., Bielecka M., Babuchowski A., Boutard A., Dubeau H. (1993). Les probiotiques. Canadian Journal of Microbiology 39: 1089-1095.
[48]  Yamada T. (2001). Defense mechanisms in the sapwood of living trees against microbial infection. Journal of Forest Research 6: 127-137.
[49]  McDowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., Plaut J., Sperry J., West A., Williams D.G. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New phytologist 178: 719-739.
[50]  Shangguan Z., Shao M., Dyckmans J. (2000). Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environmental and Experimental Botany 44: 141-149.
[51]  Biondi M., Zannino L.-G. (1997). Psychological stress, neuroimmunomodulation, and susceptibility to infectious diseases in animals and man: a review. Psychotherapy and Psychosomatics 66: 3-26.
[52]  Cabiscol Català E., Tamarit Sumalla J., Ros Salvador J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 2000, vol. 3, núm. 1, p. 3-8.
[53]  McMahon M.A.S., Xu J., Moore J.E., Blair I.S., McDowell D.A. (2007). Environmental stress and antibiotic resistance in food-related pathogens. Appl. Environ. Microbiol. 73: 211-217.
[54]  Harrison V., Peat G. (1975). Serum cholesterol and bowel flora in the newborn. The American journal of clinical nutrition 28: 1351-1355.
[55]  Hill H., Quie P. (1974). Raised serum-IgE levels and defective neutrophil chemotaxis in three children with eczema and recurrent bacterial infections. The Lancet 303: 183-187.
[56]  Lee D.K., Jang S., Baek E.H., Kim M.J., Lee K.S., Shin H.S., Chung M.J., Kim J.E., Lee K.O., Ha N.J. (2009). Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids in Health and Disease 8: 21.
[57]  Gilliland S., Nelson C., Maxwell C. (1985). Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381.
[58]  Gilliland S.E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology reviews 7: 175-188.
[59]  Baroutkoub A., Mehdi R.Z., Beglarian R., Hassan J., Zahra S., Mohammad M.S. (2010). Effects of probiotic yoghurt consumption on the serum cholesterol levels in hypercholestromic cases in Shiraz, Southern Iran. Scientific Research and Essays 5: 2206-2209.
[60]  Chiu C.-H., Lu T.-Y., Tseng Y.-Y., Pan T.-M. (2006). The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Applied Microbiology and Biotechnology 71: 238-245.
[61]  De Roos N., Schouten G., Katan M. (1999). Yoghurt enriched with Lactobacillus acidophilus does not lower blood lipids in healthy men and women with normal to borderline high serum cholesterol levels. European journal of clinical nutrition 53: 277.
[62]  Wang Y., Xu N., Xi A., Ahmed Z., Zhang B., Bai X. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Applied Microbiology and Biotechnology 84: 341-347.
[63]  Wang J., Zhang H., Chen X., Chen Y., Bao Q. (2012). Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. Journal of dairy science 95: 1645-1654.
[64]  Ayebo A., Shahani K., Dam R. (1981). Antitumor component (s) of yogurt: fractionation. Journal of dairy science 64: 2318-2323.
[65]  Ashby J., Lefevre P., Tinwell H., Brunborg G., Schmezer P., Pool-Zobel B., Shanu-Wilson R., Holme J., Soderlund E., Gulati D. (1991). The non-genotoxicity to rodents of the potent rodent bladder carcinogens o-anisidine and p-cresidine. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 250: 115-133.
[66]  Klein R., Janowsky I., Pool-Zobel B., Schmezer P., Hermann R., Amelung F., Spiegelhalder B., Zeller W. (1991). Effects of long-term inhalation of N-nitrosodimethylamine in rats. IARC scientific publications: 322-328.
[67]  McKelvey-Martin V., Green M., Schmezer P., Pool-Zobel B., De Meo M., Collins A. (1993). The single cell gel electrophoresis assay (comet assay): a European review. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 288: 47-63.
[68]  Ayad E., Nashat S., El-Sadek N., Metwaly H., El-Soda M. (2004). Selection of wild lactic acid bacteria isolated from traditional Egyptian dairy products according to production and technological criteria. Food microbiology 21: 715-725.
[69]  Leroy F., De Vuyst L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology 15: 67-78.
[70]  Hanniffy S.B., Peláez C., Martínez-Bartolomé M.A., Requena T., Martínez-Cuesta M.C. (2009). Key enzymes involved in methionine catabolism by cheese lactic acid bacteria. International journal of food microbiology 135: 223-230.
[71]  Iyer R., Tomar S., Maheswari T.U., Singh R. (2010). Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. International Dairy Journal 20: 133-141.
[72]  Cholet O., Hénaut A., Hébert A., Bonnarme P. (2008). Transcriptional analysis of L-methionine catabolism in the cheese-ripening yeast Yarrowia lipolytica in relation to volatile sulfur compound biosynthesis. Appl. Environ. Microbiol. 74: 3356-3367.
[73]  Fröhlich-Wyder M.T., Arias-Roth E., Jakob E. (2018). Cheese Yeasts. Yeast.
[74]  Sieuwerts S., De Bok F.A., Hugenholtz J., van Hylckama Vlieg J.E. (2008). Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74: 4997-5007.
[75]  Béal C., Helinck S. (2014). Yogurt and other fermented milks. Microorganisms and Fermentation of Traditional Foods: 141.
[76]  Erkus O., De Jager V.C., Spus M., van Alen-Boerrigter I.J., Van Rijswijck I.M., Hazelwood L., Janssen P.W., Van Hijum S.A., Kleerebezem M., Smid E.J. (2013). Multifactorial diversity sustains microbial community stability. The ISME journal 7: 2126.
[77]  Ruiz-Moyano S., Martín A., Benito M.J., Hernández A., Casquete R., de Guia Córdoba M. (2011). Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages. Food Microbiology 28: 839-847.
[78]  Ali I.A.I. (2006). Isolation And Characterization Of Exopolysaccharide-Producing Lactic Acid Bacteria From Sudanese Sour Milk (Rob), University of Khartoum.
[79]  Maryam B.M., Datsugwai M.S.S., Shehu I. (2017). The role of biotechnology in food production and processing. Industrial engineering 1: 24-35.
[80]  Vieira-Dalodé G., Jespersen L., Hounhouigan J., Moller P., Nago C., Jakobsen M. (2007). Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin. Journal of Applied Microbiology 103: 342-349.
[81]  Donkor O.N., Henriksson A., Vasiljevic T., Shah N.P. (2007). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait 87: 21-38.
[82]  Liu M., Nauta A., Francke C., Siezen R.J. (2008). Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl. Environ. Microbiol. 74: 4590-4600.
[83]  Almeida K.E., Tamime A., Oliveira M. (2009). Influence of total solids contents of milk whey on the acidifying profile and viability of various lactic acid bacteria. LWT-Food Science and Technology 42: 672-678.
[84]  Serhan M., Cailliez-Grimal C., Borges F., Revol-Junelles A.-M., Hosri C., Fanni J. (2009). Bacterial diversity of Darfiyeh, a Lebanese artisanal raw goat's milk cheese. Food microbiology 26: 645-652.
[85]  CRISTIANI G. (2001). Food micro—organisme and aromatic ester. Sciences des aliments 21: 211-230.
[86]  Demers-Mathieu V., Audy J., Laurin É., Fliss I., St-Gelais D. (2015). Impact of commercial mesophilic and thermophilic starters on the growth of new probiotic isolates. International Dairy Journal 45: 31-40.
[87]  N’tcha C., Haziz S., Agbobatinkpo P., Vieira-Dalodé G., Boya B., Codjia J., Kayodé P., Baba-Moussa L. (2016). Probiotic properties of lactic acid bacteria isolated from a beninese traditional beer’s ferment. International Journal of Applied Biology and Pharmaceutical Technology 7: 314-330.
[88]  De Vuyst L., Neysens P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science & Technology 16: 43-56.
[89]  Mbawala A., Mahbou P., Mouafo H., Tatsadjieu L. (2013). Antibacterial activity of some lactic acid bacteria isolated from a local fermented milk product (pendidam) in Ngaoundere, Cameroon. J. Anim. Plant Sci 23: 157-166.
[90]  Sanpui P., Murugadoss A., Prasad P.D., Ghosh S.S., Chattopadhyay A. (2008). The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. International journal of food microbiology 124: 142-146.
[91]  Zhang Y., Zhang L., Du M., Yi H., Guo C., Tuo Y., Han X., Li J., Zhang L., Yang L. (2011). Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiological research 167: 27-31.
[92]  Ndagano D., Lamoureux T., Dortu C., Vandermoten S., Thonart P. (2011). Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. Journal of food science 76: M305-M311.
[93]  Xie J., Zhang R., Shang C., Guo Y. (2009). Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. African Journal of Biotechnology 8.
[94]  De Vuyst L., Leroy F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. Journal of molecular microbiology and biotechnology 13: 194-199.
[95]  Shalini K., Sharma P.K., Kumar N. (2010). Imidazole and its biological activities: A review. Der Chemica Sinica 1: 36-47.
[96]  Zhang Y., Wang L., Wang L., Yang J., Gai Y., Qiu L., Song L. (2010). The second anti-lipopolysaccharide factor (EsALF-2) with antimicrobial activity from Eriocheir sinensis. Developmental & Comparative Immunology 34: 945-952.
[97]  Streit F., Corrieu G., Béal C. (2007). Acidification improves cryotolerance of Lactobacillusdelbrueckii subsp. bulgaricus CFL1. Journal of biotechnology 128: 659-667.
[98]  Axelsson L. (2004). Lactic acid bacteria: classification and physiology. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER- 139: 1-66.
[99]  Streit F., Delettre J., Corrieu G., Béal C. (2008). Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. Journal of applied microbiology 105: 1071-1080.
[100]  Rokka S., Rantamäki P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. European Food Research and Technology 231: 1-12.
[101]  Ying D., Schwander S., Weerakkody R., Sanguansri L., Gantenbein-Demarchi C., Augustin M.A. (2013). Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. Journal of Functional Foods 5: 98-105.
[102]  Lamoureux S.F., England J.H., Sharp M.J., Bush A.B. (2001). A varve record of increased ‘Little Ice Age’rainfall associated with volcanic activity, Arctic Archipelago, Canada. The Holocene 11: 243-249.
[103]  Millette M., Cornut G., Dupont C., Shareck F., Archambault D., Lacroix M. (2008). Capacity of human nisin-and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl. Environ. Microbiol. 74: 1997-2003.
[104]  Percival D.B., Mofjeld H.O. (1997). Analysis of subtidal coastal sea level fluctuations using wavelets. Journal of the American Statistical Association 92: 868-880.
[105]  Arena M.P., Silvain A., Normanno G., Grieco F., Drider D., Spano G., Fiocco D. (2016). Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Frontiers in microbiology 7: 464.
[106]  Ammor M.S., Mayo B. (2007). Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat science 76: 138-146.
[107]  Nueno-Palop C., Narbad A. (2011). Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. International journal of food microbiology 145: 390-394.
[108]  Iñiguez-Palomares C., Pérez-Morales R., Acedo-Félix E. (2007). Evaluation of probiotic properties in Lactobacillus isolated from small intestine of piglets. Revista Latinoamericana de Microbiologia 49: 46-54.
[109]  Ruas-Madiedo P., Gueimonde M., Margolles A., de los REYES-GAVILÁN C.G., Salminen S. (2006). Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. Journal of food protection 69: 2011-2015.
[110]  Ingber D.E., Heidemann S.R., Lamoureux P., Buxbaum R.E. (2000). REBUTTALS. Journal of Applied Physiology 89: 1663-1678.
[111]  Djaafaru T.F., Rahayu E.S., Wibowo D., Sudarmadji S. (1996). Antimicrobial substance produced by Lactobacillus sp. TGR-2 isolated from growol. Indonesian Food and Nutrition Progress 3: 29-34.
[112]  Temmerman R., Pot B., Huys G., Swings J. (2003). Identification and antibiotic susceptibility of bacterial isolates from probiotic products. International Journal of Food Microbiology 81: 1-10.
[113]  Donohue J.M., Berndt E.R., Rosenthal M., Epstein A.M., Frank R.G. (2004). Effects of pharmaceutical promotion on adherence to the treatment guidelines for depression. Medical care: 1176-1185.
[114]  Benmechernene Z., Chentouf H.F., Yahia B., Fatima G., Quintela-Baluja M., Calo-Mata P., Barros-Velázquez J. (2013). Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. BioMed research international 2013.
[115]  Ait-Belgnaoui A., Durand H., Cartier C., Chaumaz G., Eutamene H., Ferrier L., Houdeau E., Fioramonti J., Bueno L., Theodorou V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37: 1885-1895.
[116]  Ouled-Haddar H., Sifour M., Guezira M., Bouthabet M. (2012). Isolation, characterization and microencapsulation of probiotic Lactobacillus curvatus G7 from chicken crop. TOJSAT 2: 1-6.
[117]  Ouwehand A.C., Bergsma N., Parhiala R., Lahtinen S., Gueimonde M., Finne-Soveri H., Strandberg T., Pitkälä K., Salminen S. (2008). Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunology & Medical Microbiology 53: 18-25.
[118]  Havenaar R., Ten Brink B., Huis J.H. (1992). Selection of strains for probiotic use, Probiotics, Springer. pp. 209-224.
[119]  Prasad J., Gill H., Smart J., Gopal P.K. (1998). Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal 8: 993-1002.
[120]  Pennacchia C., Ercolini D., Blaiotta G., Pepe O., Mauriello G., Villani F. (2004). Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat science 67: 309-317.
[121]  Fuller R. (2012). Probiotics: the scientific basis Springer Science & Business Media.
[122]  Gomez-Gil B., Roque A., Turnbull J.F. (2000). The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191: 259-270.
[123]  Ouwehand A.C., Salminen S., Isolauri E. (2002b). Probiotics: an overview of beneficial effects, Lactic Acid Bacteria: Genetics, Metabolism and Applications, Springer. pp. 279-289.
[124]  Ehrmann M.A., Kurzak P., Bauer J., Vogel R.F. (2002). Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. Journal of applied microbiology 92: 966-975.
[125]  Ocaña V.S., de Ruiz Holgado A.A.P., Nader-Macías M.E. (1999). Selection of vaginal H 2 O 2-generating Lactobacillus species for probiotic use. Current microbiology 38: 279-284.
[126]  Sharma P.K., McCarty P.L. (1996). Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1, 2-dichloroethene. Appl. Environ. Microbiol. 62: 761-765.
[127]  Teuber M., Meile L., Schwarz F. (1999). Acquired antibiotic resistance in lactic acid bacteria from food, Lactic acid bacteria: Genetics, metabolism and applications, Springer. pp. 115-137.