Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: http://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2013, 1(1), 1-5
DOI: 10.12691/jaem-1-1-1
Open AccessArticle

Microbial Decolorization of the Azo Dye Methyl Red by Enterobacter spp. ETL-1979

Maulin P Shah1, , Kavita A Patel1, Sunu S Nair1 and A M Darji1

1Industrial Waste Water Research Laboratory, Applied & Environmental Microbiology Lab, Enviro Technology Limited (CETP), GIDC, Ankleshwar, Gujarat, India

Pub. Date: December 08, 2013

Cite this paper:
Maulin P Shah, Kavita A Patel, Sunu S Nair and A M Darji. Microbial Decolorization of the Azo Dye Methyl Red by Enterobacter spp. ETL-1979. Journal of Applied & Environmental Microbiology. 2013; 1(1):1-5. doi: 10.12691/jaem-1-1-1

Abstract

Bacterial isolates, obtained from dye-contaminated sludge, decolorized the toxic azo dye methyl red (MR). Enterobacter spp. ETL-1979 was selected because of its better abilities to completely decolorize MR under aerobic conditions. Effects of physicochemical parameters (temperature, stirring, concentration of glucose and pH of the synthetic medium) on the MR decolorization by the selected bacterium were studied. Under optimal conditions, Enterobacter spp. ETL-1979 completely decolorized 100 mg/l of MR within 6 h of incubation in synthetic medium. The high MR decolorization ability and low nutrient and environmental requirements of Enterobacter spp. ETL-1979 enable this bacterium to be used in the biological treatment of industrial effluent containing azo dyes.

Keywords:
azo dye methyl red bacterial decolorization Enterobacter

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Anliker A. (1979). Ecotoxicology of dyestuffs - Ajoint effort by industry. Ecotoxicol. Environ. Safety, 3: 59-74.
 
[2]  Carliell C.M., Barclay S.J., Naidoo N., Buckley C.A., Mulholland D.A., Senior E. (1995). Microbial decolourization of a reactive azo dye under anaerobic conditions. Water S.A., 21: 61-69.
 
[3]  Chang J.S., Kuo T.S. (2000). Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresource Technol., 75: 107-111.
 
[4]  Chang J.S., Chou C., Chen S.Y. (2001). Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry, 36: 757-763.
 
[5]  Chung K.T., Fulk G.E., Andrews A.W. (1981). Mutagenicity testing of some commonly used dyes. Appl. Environ. Microbiol., 42: 641-648.
 
[6]  Chung K.T., Cerniglia C.E. (1992). Mutagenicity of azo dyes: structure-activity relationships. Mutation Res., 277: 201-220.
 
[7]  Flores E.R., Luijten M., Donlon B.A., Lettinga G., Field J.A. (1997). Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions. Environ. Sci. Technol., 31: 2098-2103.
 
[8]  Holme, I. (1984). Ecological aspects of color chemistry. In: Griffiths J., ed., Developments in Chemistry and Technology of Organic Dyes. Society of Chemistry Industry, Oxford, pp. 111-128.
 
[9]  Hu T.L. (1998). Degradation of azo dye RP2B by Pseudomonas luteola. Wat. Sci. Tech., 38:299-306.
 
[10]  Krieg N.R., Holt J.G., eds (1984). Bergey’s Manual of Systemic Bacteriology. Vol.1, William and Wilkins, Baltimore.
 
[11]  Ogawa T., Yatome C., Idaka E., Kamya H. (1986). Biodegradation of azo acid dyes by continuous cultivation of Pseudomonas cepacia 13NA. J. Soc. Dyers Colorists, 102: 12-14.
 
[12]  Ogawa T., Yatome C. (1990). Biodegradation of azo dyes in multistage rotating contactor immobilized by assimilating bacteria. Bull. Environ. Contam. Toxicol., 44: 561-566.
 
[13]  Rafii F., Franklin W., Cerniglia C.E. (1990). Azoreductases activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol., 56: 2146-2151.
 
[14]  Rafii F., Cerniglia C.E. (1993). Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl. Environ. Microbiol., 59: 1731-1734.
 
[15]  Seshardi S., Bishop P.L., Agha A.M. (1994). Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage, 14: 127-137.
 
[16]  So K.O., Wong P.K., Chang K.Y. (1990). Decolorization and biodegradation of methyl red by Acetobacter liquifaciens. Tox. Assess., 5: 221-235.
 
[17]  Suzuki Y., Yoda T., Ruhul A., Sugiura W. (2001). Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J. Biol. Chem., 276: 9059-9065.
 
[18]  Wong P.K., Yuen P.Y. (1996). Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Wat. Sci. Tech., 30: 1736-1744.
 
[19]  Yatome C., Ogawa T., Hishida H., Taguchi T. (1990). Degradation of azo dyes by cell-free extract from Pseudomonas stutzeri. J. Soc. Dyers Colorists, 106: 280-283.
 
[20]  Zimmermann T., Kulla H.G., Leisinger T. (1982). Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur. J. Biochem., 129: 197-203.
 
[21]  Zissi U., Lyberatos G. (1996). Azo dye biodegradation under anoxic conditions. Wat. Sci. Tech., 34: 495-500.
 
[22]  Zollinger H. (1991). Color chemistry - syntheses, properties and applications of organic dyes and pigments, VCH Publications, New York. Ann.