International Transaction of Electrical and Computer Engineers System
ISSN (Print): 2373-1273 ISSN (Online): 2373-1281 Website: http://www.sciepub.com/journal/iteces Editor-in-chief: Dr. Pushpendra Singh, Dr. Rajkumar Rajasekaran
Open Access
Journal Browser
Go
International Transaction of Electrical and Computer Engineers System. 2014, 2(1), 1-6
DOI: 10.12691/iteces-2-1-1
Open AccessArticle

Improving the Steady and Transient Performance in the Buck Converter Using Sliding Mode Control

Mehrnoush Sharifian1, and Majid Delshad2

1Electrical Department, Khomeini Shahr Branch, Islamic Azad University, Isfahan, Iran

2Electrical Department, Khorasgan Branch, Islamic Azad University, Isfahan, Iran

Pub. Date: January 08, 2014

Cite this paper:
Mehrnoush Sharifian and Majid Delshad. Improving the Steady and Transient Performance in the Buck Converter Using Sliding Mode Control. International Transaction of Electrical and Computer Engineers System. 2014; 2(1):1-6. doi: 10.12691/iteces-2-1-1

Abstract

Thisarticle presents a non-linear controlling method to improve the steady state response of the buck converter. In this design, saturation of control signals and switching losses are taken into consideration and therefore, the control process is designed based on loss reduction. The converter is controlled on the basis of hysteresis modulation and switching frequency is corresponding to state variable movements in the vicinity of the sliding line. In addition, the dynsamic response of the system with the nominal load change is presented and the effect of the designed controller on improvement of this parameter is compared.

Keywords:
buck converter sliding mode control hysteresis band direct

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  Siew-Chong Tan,, Y. M. Lai, , Chi K. Tse, “A Fixed-Frequency Pulsewidth Modulation Based Quasi-Sliding-Mode Controller for Buck Converters” IEEE Trans. Power Electron, vol. 20, no. 6, pp. 1379-1392, Nov 2005.
 
[2]  S.C. Tan, Y.M. Lai, M.K.H, Cheung, and C.K. Tse, “On the practical design of a sliding mode voltage controlled buck converter” IEEE Trans. Power Electron, vol. 20, no. 2, pp. 425-437, Mar 2005.
 
[3]  G. Spiazzi and P. Mattavelli, “Sliding-mode control of switched-mode power supplies in The Power Electronics” Handbook. Boca Raton, FL: CRC Press LLC, 2002, ch. 8.
 
[4]  Hao-Ran Wang; Guo-Rong Zhu; Dong-Hua Zhang; Wei Chen; Yu Chen “On The Practical Design of a Single-Stage Single-Switch Isolated PFC Regulator Based on Sliding Mode Control” IEEE conf. Power Electron, vol. 1, pp. 719-724, 2012.
 
[5]  S.B. Guo, X.F. Lin-Shi, B. Allard, Y.X. Gao, and Y. Ruan, “Digital Sliding mode controller for high-frequency DC/DC SMPS,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1120-1123, May 2010.
 
[6]  R. Venkataramanan, A. Sabanoivc, and S. Cuk, “Sliding modecontrol of dc-to-dc converters,” in Proc. IEEE Conf. Industrial Electronics, Control Instrumentations (IECON), 1985, pp. 251-258.
 
[7]  V. M. Nguyen and C. Q. Lee, “Indirect implementations of slidingmodecontrol law in buck-type converters,” in Proc. IEEE Applied Power Electronics Conf. Expo (APEC), vol. 1, Mar. 1996, pp. 111-115.
 
[8]  P. Mattavelli, L. Rossetto, G. Spiazzi, and P. Tenti, “General-purposesliding-mode controller for dc / dc converter applications,” in Proc. IEEE Power Electronics Specialists Conf. (PESC), Jun. 1993, pp. 609-615.
 
[9]  Siew-Chong Tan; Lai, Y.M.; Tse, C.K.; An Adaptive Sliding Mode Controller for buck converterin Continuous Condition Mode IEEE Conf. Power Electron, vol. 3, pp. 1935-1400, 2004.
 
[10]  Yu Chen and Yong Kang, “The Variable-Bandwidth Hysteresis-Modulation Sliding-Mode Control for the PWM-PFM Converters” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2727-2734,Oct 2011.