International Journal of Partial Differential Equations and Applications
ISSN (Print): 2376-9548 ISSN (Online): 2376-9556 Website: http://www.sciepub.com/journal/ijpdea Editor-in-chief: Mahammad Nurmammadov
Open Access
Journal Browser
Go
International Journal of Partial Differential Equations and Applications. 2016, 4(2), 25-31
DOI: 10.12691/ijpdea-4-2-2
Open AccessArticle

Random Exponential Attractor and Equilibrium for a Stochastic Reaction-diffusion Equation with Multiplicative Noise

Gang Wang1,

1School of Science, Hubei University of Technology, Wuhan, China

Pub. Date: September 13, 2016

Cite this paper:
Gang Wang. Random Exponential Attractor and Equilibrium for a Stochastic Reaction-diffusion Equation with Multiplicative Noise. International Journal of Partial Differential Equations and Applications. 2016; 4(2):25-31. doi: 10.12691/ijpdea-4-2-2

Abstract

In this paper, we present a result on existence of exponential attractors for abstract random dynamical systems, and then give a criterion for exponentially attractive property of random attractors. As an application, we first prove that the random dynamical system generated by a stochastic reaction-diffusion equation possesses a random exponential attractor. Then we show that the unique random equilibrium when the nonlinearity satisfies some restrictive condition is exactly an exponential attractor.

Keywords:
random dynamical system random exponential attractor random equilibrium stochastic reaction-diffusion equation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Arnold L., Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
 
[2]  Bates P. W., Lu K., Wang B., “Random attractors for stochastic reaction-diffusion equations on unbounded domains,” J. Dynam. Differential Equations 13 (2001) 791-806.
 
[3]  Babin A., Nicolaenko B., “Exponential attractors of reaction-diffusion systems on unbounded domain,” J. Differential Equations 7 (1995) 567-590.
 
[4]  Crauel H., Debussche A., Flandoli F., “Random attractors,” J. Dynam. Differential Equations 9 (1997) 307-341.
 
[5]  Crauel H., Flandoli F., “Attractors for random dynamical systems,” Probab. Theory Related Fields 100 (1994) 365-393.
 
[6]  Dung L., Nicolaenko B., “Exponential Attractors in Banach Spaces,” J. Dynam. Differential Equations 13 (2001) 791-806.
 
[7]  Eden A., Foias C., Nicolaenko B., Temam R., Exponential Attractors for Dissipative Evolution Equations, in: Research in Applied Mathematics, vol. 37, John Wiley, New York, 1994.
 
[8]  Efendiev M., Miranville A., Zelik S., “Exponential attractors for a singularly perturbed Cahn-Hilliard system,” Math. Nachr. 272 (2004) 11-31.
 
[9]  Efendiev M., Miranville A., Zelik S., “Exponential attractors for a nonlinear reactiondi ffusion system in ,” C. R. Acad. Sci. Paris, Sér. I 330 (2000) 713-718.
 
[10]  Málek J., Pražák D., “Large time behavior via the method of l-trajectories,” J. Differential Equations 181 (2002) 243-279.
 
[11]  Schmalfuss B., Backword cocycle and attractors of stochastic differential equations in: V. Reitmann, T. Riedrich, N. Koksch(Eds.), International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Technische Universität, Dresden, 1992, pp. 185-192.
 
[12]  Shirikyan A., Zelik S., “Exponential attractors for random dynamical systems and applications,” Stoch. PDE: Anal. Comp. 1 (2013) 241-281.
 
[13]  Wang G, Tang Y. B. “(L2,H1)-random attractors for stochastic reaction-diffusion equation on unbounded domains,” Abstr. Appl. Anal. 2013(2013), Article ID 279509, 23 pages.
 
[14]  Wang Z. J., Zhou S. F., “Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains,” J. Math. Anal. Appl. 384 (1) (2011) 160-172.
 
[15]  Zhao W. Q., “H1-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises,” Commun. Nonlinear Sci. Numer. Simulat. (2013) 2707-2721.