International Journal of Partial Differential Equations and Applications
ISSN (Print): 2376-9548 ISSN (Online): 2376-9556 Website: http://www.sciepub.com/journal/ijpdea Editor-in-chief: Mahammad Nurmammadov
Open Access
Journal Browser
Go
International Journal of Partial Differential Equations and Applications. 2013, 1(1), 1-5
DOI: 10.12691/ijpdea-1-1-1
Open AccessArticle

Auxiliary Function Method for Nonlinear Partial Differential Equations

Haiming Fu1, and Zhengde Dai2

1Department of Basic Courses, Guangzhou Hua Xia Technical College, Guangzhou,, PR China

2Department of Mathematics, Yunnan University, Kunming, PR Chin

Pub. Date: September 11, 2013

Cite this paper:
Haiming Fu and Zhengde Dai. Auxiliary Function Method for Nonlinear Partial Differential Equations. International Journal of Partial Differential Equations and Applications. 2013; 1(1):1-5. doi: 10.12691/ijpdea-1-1-1

Abstract

A new auxiliary function method is given, and some exact solutions of the auxiliary function are given too. As an example, Reaction-diffusion equation and BBM-Burgers equation are solved. Obviously, the auxiliary function method can be applied to solve other type of nonlinear partial differential equations as well.

Keywords:
reaction-diffusion equation BBM-Burgers equation auxiliary function method exact solutions

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Press, , 1991.
 
[2]  M.R. Miurs, B├Ącklund Transformation, , 1978.
 
[3]  A. Coely, et al. (Eds.), B├Ącklund and Darboux Transformations, Amer. Math. Soc., , 2001.
 
[4]  R. Hirota, Phys. Rev. Lett. 27 (1971).
 
[5]  C.L. Bai, H. Zhao, Chaos Solitons Fractals 27 (2006) 1026.
 
[6]  M.F. El-Sabbagh, A.T. Ali, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 151.
 
[7]  Y.G. Zhu, Z.S. Lu, Chaos Solitons Fractals 27 (2006) 836.
 
[8]  H.A. Abdusalam, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 99.
 
[9]  E.G. Fan, Phys. Lett. A, 277 (2000) 212.
 
[10]  E.G. Fan, Z. Naturforsch. A: Phys. Sci. 56 (2001) 312.
 
[11]  Z.Y. Yan, Phys. Lett. A 292 (2001) 100.
 
[12]  B. Li, H.Q. Zhang, Chaos Solitons Fractals 15 (2003) 647.
 
[13]  M.L. Wang, Phys. Lett. A 213 (1996) 279.
 
[14]  Z.Y. Yan, H.Q. Zhang, Phys. Lett. A 285 (2001) 355.
 
[15]  M.A. Abdou, A.A. Soliman, Physica D 211 (2005) 1.
 
[16]  M.A. Abdou, A.A. Soliman, J. Comput. Appl. Math. 181 (2005) 245.
 
[17]  A. A Soliman, K.R. Raslan, Int. J. Comput. Math. 78 (2001) 399.
 
[18]  A.A. Soliman, Int. J. Comput. Math. 81 (2004) 325.
 
[19]  A.A. Soliman, M.H. Hussein, Appl. Math. Comput. 161 (2005) 623.
 
[20]  T.A. Abassy, M.A. El-Tawil, H.K. Saleh, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 327.
 
[21]  S.K. Liu, Z.T. Liu, Q. Zhao, Phys. Lett. A 289 (2001) 69.
 
[22]  Y.B. Zhou, M.L. Wang, Y.M. Wang, Phys. Lett. A 308 (2003) 31.
 
[23]  Sirendaoreji, J. Sun, Phys. Lett. A 309 (2003) 387.
 
[24]  E. Yomba, Chaos Solitons Fractals 22 (2004) 321.
 
[25]  E. Yomba, Chaos Solitons Fractals 21 (2004) 75.
 
[26]  E.G. Fan, Phys. Lett. A 300 (2003) 243.
 
[27]  E.G. Fan, Y. Hon, Chaos Solitons Fractals 15 (2003) 559.
 
[28]  J.Q. Hu, Chaos Solitons Fractals 23 (2005) 391.
 
[29]  R. Sabry, M.A. Zahran, E.G. Fan, Phys. Lett. A 326 (2004) 93.
 
[30]  Y. Chen, Q. Wang, Chaos Solitons Fractals 23 (2005) 801.
 
[31]  E. Yomba, Chin. J. Phys. 43 (2005) 789.
 
[32]  E. Yomba, Phys. Lett. A 336 (2005) 463.
 
[33]  S. Zhang, T.C. Xia, Phys. Lett. A 356 (2006) 119.
 
[34]  E. Yomba, Chaos Solitons Fractals 27 (2006) 187.
 
[35]  E. Yomba, Chaos Solitons Fractals 26 (2005) 785.
 
[36]  Sirendaoreji, Phys. Lett. A 356 (2006) 124.
 
[37]  Sirendaoreji, Phys. Lett. A 363 (2007) 440.
 
[38]  S. Zhang, T.C. Xia, Phys. Lett. A 363 (2007) 356.