International Journal of Physics:

Home » Journal » IJP » Archive » Volume 1, Issue 6

Article

Unified Field Theory and the Hierarchical Universe

1Wayne State University, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Deerfield High School, Deerfield


International Journal of Physics. 2013, 1(6), 162-170
DOI: 10.12691/ijp-1-6-5
Copyright © 2013 Science and Education Publishing

Cite this paper:
Zhiliang Cao, Henry Gu Cao. Unified Field Theory and the Hierarchical Universe. International Journal of Physics. 2013; 1(6):162-170. doi: 10.12691/ijp-1-6-5.

Correspondence to: Zhiliang  Cao, Wayne State University, Detroit. Email: williamcao12252000@yahoo.com

Abstract

Everything from the smallest particle to the grand universe is constructed by Torque Grids. The grand structure of the universe is made up of infinite hierarchical Torque Grids; this theory falsifies Big Bang Theory (BBT) and Black Hole Theory. A Torque Grid is 10-25 times smaller than an atom, and our universal Torque Grid size is 4.98 * 1026 m. The Universe is timeless. The configuration of Spiral Arm Galaxy can also be explained by Unified Field Theory.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[[2]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[[3]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
 
[[4]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
 
[[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
 
Show More References
[6]  Aron, Jacob. “Largest structure challenges Einstein's smooth cosmos”. New Scientist. Retrieved 14 January 2013.
 
[7]  “Astronomers discover the largest structure in the universe”. Royal astronomical society. Retrieved 2013-01-13.
 
[8]  Clowes, Roger; Harris; Raghunathan; Campusano; Soechting; Graham; Kathryn A. Harris, Srinivasan Raghunathan, Luis E. Campusano, Ilona K. Söchting and Matthew J. Graham (2012-01-11). “A structure in the early Universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology”. Monthly notices of the royal astronomical society 1211 (4): 6256.
 
[9]  “The Largest Structure in Universe Discovered - Quasar Group 4 Billion Light-Years Wide Challenges Current Cosmology”. Retrieved 14 January 2013.
 
[10]  Prostak, Sergio (11 January 2013). “Universe's Largest Structure Discovered”. scinews.com. Retrieved 15 January 2013.
 
[11]  Yadav, Jaswant; J. S. Bagla and Nishikanta Khandai (25 February 2010). “Fractal dimension as a measure of the scale of homogeneity”. Monthly notices of the Royal Astronomical Society 405 (3): 2009-2015.
 
[12]  Hogg, D.W. et al., (May 2005) “Cosmic Homogeneity Demonstrated with Luminous Red Galaxies”. The Astrophysical Journal 624: 54-58.
 
[13]  Scrimgeour, Morag I. et al., (May 2012) “The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity”. Monthly Notices of the Royal Astronomical Society 425 (1): 116-134.
 
[14]  Nadathur, Seshadri, (July 2013) “Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity”. Monthly Notices of the Royal Astronomical Society in press.
 
[15]  Gott, J. Richard, III et al. (May 2005). “A Map of the Universe”. The Astrophysical Journal 624 (2): 463-484.
 
[16]  Gaite, Jose, Dominguez, Alvaro and Perez-Mercader, Juan (August 1999) “The fractal distribution of galaxies and the transition to homogeneity”. The Astrophysical Journal 522: L5-L8.
 
[17]  Wollack, E.J. (10 December 2010). “Cosmology: The Study of the Universe”. Universe 101: Big Bang Theory. NASA. Archived from the original on 14 May 2011. Retrieved 27 April 2011. “The second section discusses the classic tests of the Big Bang theory that make it so compelling as the likely valid description of our universe.”
 
[18]  “Planck reveals an almost perfect universe”. Planck. ESA. 2013-03-21. Retrieved 2013-03-21.
 
[19]  Staff (21 March 2013). “Planck Reveals An Almost Perfect Universe”. ESA. Retrieved 21 March 2013.
 
[20]  Clavin, W.; Harrington, J.D. (21 March 2013). “Planck Brings Universe Into Sharp Focus”. NASA. Retrieved 21 March 2013.
 
[21]  Overbye, D. (21 March 2013). “An Infant Universe, Born Before We Knew”. New York Times. Retrieved 21 March 2013.
 
[22]  Boyle, A. (21 March 2013). “Planck probe's cosmic 'baby picture' revises universe's vital statistics”. NBC News. Retrieved 21 March 2013.
 
[23]  “How Old is the Universe?”. WMAP - Age of the Universe. NASA. 21 December 2012. Retrieved 2013-01-01.
 
[24]  Komatsu, E.; et al. (2009). “Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation”. Astrophysical Journal Supplement 180 (2): 330.
 
[25]  Menegoni, E.; et al. (2009). “New constraints on variations of the fine structure constant from CMB anisotropies”. Physical Review D 80 (8): 087302.
 
[26]  “Origins: CERN: Ideas: The Big Bang”. The Exploratorium. 2000. Archived from the original on 2 September 2010. Retrieved 3 September 2010.
 
[27]  Keohane, J. (8 November 1997). “Big Bang theory”. Ask an astrophysicist. GSFC/NASA. Archived from the original on 2 September 2010. Retrieved 3 September 2010.
 
[28]  Wright, E.L. (9 May 2009). “What is the evidence for the Big Bang?”. Frequently Asked Questions in Cosmology. UCLA, Division of Astronomy and Astrophysics. Retrieved 16 October 2009.
 
[29]  Gibson, C.H. (2001). “The First Turbulent Mixing and Combustion”. IUTAM Turbulent Mixing and Combustion.
 
[30]  Gibson, C.H. (2001). “Turbulence And Mixing In The Early Universe”.
 
[31]  Gibson, C.H. (2005). “The First Turbulent Combustion”.
 
[32]  Hubble, E. (1929). “A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae”. Proceedings of the of Sciences 15 (3): 168-73.
 
[33]  Kragh, H. (1996). Cosmology and Controversy. Press. p. 318.
 
[34]  Hawking, S.W.; Ellis, G.F.R. (1973). The Large-Scale Structure of Space-Time. Press.
 
[35]  Roos, M. (2008). “Expansion of the Universe - Standard Big Bang Model”. In Engvold, O.; Stabell, R.; Czerny, B. et al. Astronomy and Astrophysics. Encyclopedia of Life Support Systems. UNESCO. “This singularity is termed the Big Bang.”
 
[36]  Drees, W.B. (1990). Beyond the big bang: quantum cosmologies and God. Open Court Publishing. pp. 223-224.
 
[37]  Weinberg, S. (1993). The First Three Minutes: A Modern View Of The Origin Of The Universe. Basic Books. p. [page needed].
 
[38]  Bennett, C.L.; et al. (2013). “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results”.
 
[39]  Guth, A.H. (1998). The Inflationary Universe: Quest for a New Theory of Cosmic Origins. Vintage Books.
 
[40]  Schewe, P. (2005). “An of Quarks”. Physics News Update (American Institute of Physics) 728 (1).
 
[41]  Moskowitz, C. (25 September 2012). “Hubble Telescope Reveals Farthest View Into Universe Ever”. Space.com. Retrieved 26 September 2012.
 
[42]  Spergel, D.N.; et al. (2003). “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters”. Astrophysical Journal Supplement 148 (1): 175.
 
[43]  Jarosik, N.; et al. (WMAP Collaboration) (2011). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. NASA/GSFC. p. 39, Table 8. Retrieved 4 December 2010.
 
[44]  Peebles, P.J.E.; Ratra, B. (2003). “The Cosmological Constant and Dark Energy”. Reviews of Modern Physics 75 (2): 559-606.
 
[45]  Ivanchik, A.V.; Potekhin, A.Y.; Varshalovich, D.A. (1999). “The Fine-Structure Constant: A New Observational Limit on Its Cosmological Variation and Some Theoretical Consequences”. Astronomy and Astrophysics 343: 459.
 
[46]  Goodman, J. (1995). “Geocentrism Reexamined”. Physical Review D 52 (4): 1821.
 
[47]  “'Big bang' astronomer dies”. BBC News. 22 August 2001. Archived from the original on 8 December 2008. Retrieved 7 December 2008.
 
[48]  Mitton, S. (2005). Fred Hoyle: A Life in Science. Aurum Press. p. 127.
 
[49]  Slipher, V.M (1913). “The Radial Velocity of the Andromeda Nebula”. Observatory Bulletin 1: 56-57.
 
[50]  Slipher, V.M (1915). “Spectrographic Observations of Nebulae”. Popular Astronomy 23: 21-24.
 
[51]  Friedman, A. (1999). “On the Curvature of Space”. General Relativity and Gravitation 31 (12): 1991-2000.
 
[52]  Lemaître, G. (1931). “A Homogeneous Universe of Constant Mass and Growing Radius Accounting for the Radial Velocity of Extragalactic Nebulae”. Monthly Notices of the Royal Astronomical Society 91: 483-490.
 
[53]  Lemaître, G. (1931). “The Evolution of the Universe: Discussion”. Nature 128 (3234): 699-701.
 
[54]  Christianson, E. (1995). Edwin Hubble: Mariner of the Nebulae. Farrar, Straus and Giroux.
 
[55]  Kragh, H. (1996). Cosmology and Controversy. Press.
 
[56]  “People and Discoveries: Big Bang Theory”. A Science Odyssey. PBS. Retrieved 9 March 2012.
 
[57]  Eddington, A. (1931). “The End of the World: from the Standpoint of Mathematical Physics”. Nature 127 (3203): 447-453.
 
[58]  Appolloni, S. (2011). ““Repugnant”, “Not Repugnant at All”: How the Respective Epistemic Attitudes of Georges Lemaitre and Sir Arthur Eddington Influenced How Each Approached the Idea of a Beginning of the Universe”. IBSU Scientific Journal 5 (1): 19-44.
 
[59]  Lemaître, G. (1931). “The Beginning of the World from the Point of View of Quantum Theory”. Nature 127 (3210): 706.
 
[60]  Milne, E.A. (1935). Relativity, Gravitation and World Structure. Press.
 
[61]  Tolman, R.C. (1934). Relativity, Thermodynamics, and Cosmology. Clarendon Press.
 
[62]  Zwicky, F. (1929). “On the Red Shift of Spectral Lines through Interstellar Space”. Proceedings of the of Sciences 15 (10): 773-779.
 
[63]  Hoyle, F. (1948). “A New Model for the Expanding Universe”. Monthly Notices of the Royal Astronomical Society 108: 372.
 
[64]  Alpher, R.A.; Bethe, H.; Gamow, G. (1948). “The Origin of Chemical Elements”. Physical Review 73 (7): 803.
 
[65]  Alpher, R.A.; Herman, R. (1948). “Evolution of the Universe”. Nature 162 (4124): 774.
 
[66]  Singh, S. (21 April 2007). “Big Bang”. SimonSingh.net. Archived from the original on 30 June 2007. Retrieved 28 May 2007.
 
[67]  Croswell, K. (1995). The Alchemy of the Heavens. Anchor Books. chapter 9.
 
[68]  Penzias, A.A.; Wilson, R.W. (1965). “A Measurement of Excess Antenna Temperature at 4080 Mc/s”. Astrophysical Journal 142: 419.
 
[69]  Boggess, N.W.; et al. (1992). “The COBE : Its Design and Performance Two Years after the launch”. Astrophysical Journal 397: 420.
 
[70]  Spergel, D.N.; et al. (2006). “Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology”. Astrophysical Journal Supplement 170 (2): 377.
 
[71]  Krauss, L. (2012). A Universe From Nothing: Why there is Something Rather than Nothing. Free Press. p. 118.
 
[72]  Gladders, M.D.; et al. (2007). “Cosmological Constraints from the Red-Sequence Cluster Survey”. The Astrophysical Journal 655 (1): 128-134.
 
[73]  The Four Pillars of the Standard Cosmology.
 
[74]  Sadoulet, B. (2010). “Direct Searches for Dark Matter”. Astro2010: The Astronomy and Astrophysics Decadal Survey. National Academies Press. Retrieved 12 March 2012.
 
[75]  Cahn, R. (2010). “For a Comprehensive Space-Based Dark Energy Mission”. Astro2010: The Astronomy and Astrophysics Decadal Survey. National Academies Press. Retrieved 12 March 2012.
 
[76]  Srianand, R.; Petitjean, P.; Ledoux, C. (2000). “The microwave background temperature at the redshift of 2.33771”. Nature 408 (6815): 931-935. Lay summary - European Southern Observatory (December 2000).
 
[77]  Gannon, M. (21 December 2012). “New 'Baby Picture' of Universe Unveiled”. Space.com. Retrieved 21 December 2012.
 
[78]  Wright, E.L. (2004). “Theoretical Overview of Cosmic Microwave Background Anisotropy”. In W. L. Freedman. Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series. Press. p. 291.
 
[79]  White, M. (1999). “Anisotropies in the CMB”. Proceedings of the Meeting, DPF 99. UCLA.
 
[80]  Steigman, G. (2005). “Primordial Nucleosynthesis: Successes And Challenges”. International Journal of Modern Physics E 15: 1-36.
 
[81]  Bertschinger, E. (2001). “Cosmological Perturbation Theory and Structure Formation”.
 
[82]  Bertschinger, E. (1998). “Simulations of Structure Formation in the Universe”. Annual Review of Astronomy and Astrophysics 36 (1): 599-654.
 
[83]  Fumagalli, M.; O'Meara, J.M.; Prochaska, J.X. (2011). “Detection of Pristine Gas Two Billion Years After the Big Bang”. Science 334 (6060): 1245-9.
 
[84]  “Astronomers Find Clouds of Primordial Gas from the Early Universe, Just Moments After Big Bang”. Science Daily. 10 November 2011. Retrieved 13 November 2011.
 
[85]  Perley, D. (21 February 2005). “Determination of the Universe's Age, to”. of , Astronomy Department. Retrieved 27 January 2012.
 
[86]  Srianand, R.; Noterdaeme, P.; Ledoux, C.; Petitjean, P. (2008). “First detection of CO in a high-redshift damped Lyman-a system”. Astronomy and Astrophysics 482 (3): L39.
 
[87]  Avgoustidis, A.; Luzzi, G.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L. (2011). “Constraints on the CMB temperature-redshift dependence from SZ and distance measurements”.
 
[88]  Belusevic, R. (2008). Relativity, Astrophysics and Cosmology. Wiley-VCH. p. 16.
 
[89]  Sakharov, A.D. (1967). “Violation of CP Invariance, C Asymmetry and Baryon Asymmetry of the Universe”. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, Pisma 5: 32. (Russian) (Translated in Journal of Experimental and Theoretical Physics Letters 5, 24 (1967).)
 
[90]  Keel, B. (October 2009). “Dark Matter”. Retrieved 24 July 2013.
 
[91]  , W. M.; et al. (2006). “Review of Particle Physics: Dark Matter”. Journal of Physics G 33 (1): 1-1232.
 
[92]  Navabi, A.A.; Riazi, N. (2003). “Is the Age Problem Resolved?”. Journal of Astrophysics and Astronomy 24 (1-2): 3.
 
[93]  Penrose, R. (1979). “Singularities and Time-Asymmetry”. In Hawking, S.W. (ed); , W. (ed). General Relativity: An Einstein Centenary Survey. Press. pp. 581-638.
 
[94]  Penrose, R. (1989). “Difficulties with Inflationary Cosmology”. In Fergus, E.J. (ed). Proceedings of the 14th Symposium on Relativistic Astrophysics. of Sciences. pp. 249-264.
 
[95]  Dicke, R.H.; Peebles, P.J.E. “The big bang cosmology—enigmas and nostrums”. In Hawking, S.W. (ed); , W. (ed). General Relativity: an Einstein centenary survey. Press. pp. 504-517.
 
[96]  , R.R; Kamionkowski, M.; Weinberg, N. N. (2003). “Phantom Energy and Cosmic Doomsday”. Physical Review Letters 91 (7): 071301.
 
[97]  Hawking, S.W.; Ellis, G.F.R. (1973). The Large Scale Structure of Space-Time. (): Press.
 
[98]  Hartle, J.H.; Hawking, S. (1983). “Wave Function of the Universe”. Physical Review D 28 (12): 2960.
 
[99]  Langlois, D. (2002). “Brane Cosmology: An Introduction”. Progress of Theoretical Physics Supplement 148: 181-212.
 
[100]  Linde, A. (2002). “Inflationary Theory versus Ekpyrotic/Cyclic Scenario”.
 
[101]  Than, K. (2006). “Recycled Universe: Theory Could Solve Cosmic Mystery”. Space.com. Retrieved 3 July 2007.
 
[102]  Kennedy, B.K. (2007). “What Happened Before the Big Bang?”. Archived from the original on 4 July 2007. Retrieved 3 July 2007.
 
[103]  Linde, A. (1986). “Eternal Chaotic Inflation”. Modern Physics Letters A 1 (2): 81.
 
[104]  Linde, A. (1986). “Eternally Existing Self-Reproducing Chaotic Inflationary Universe”. Physics Letters B 175 (4): 395-400.
 
[105]  Harris, J.F. (2002). Analytic philosophy of religion. Springer. p. 128.
 
[106]  Frame, T. (2009). Losing my religion. UNSW Press. pp. 137-141.
 
[107]  Harrison, P. (2010). The Companion to Science and Religion. Press. p. 9.
 
[108]  Sagan, C. (1988). introduction to A Brief History of Time by Stephen Hawking. Bantam Books. pp. X. “... a universe with no edge in space, no beginning or end in time, and nothing for a Creator to do.”
 
[109]  Schutz, Bernard F. (2003). Gravity from the ground up. Press. p. 110.
 
[110]  Davies, P. C. W. (1978). “Thermodynamics of Black Holes”. Reports on Progress in Physics 41 (8): 1313-1355.
 
[111]  Michell, J. (1784). “On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose”. Philosophical Transactions of the Royal Society 74 (0): 35-57.
 
[112]  Gillispie, C. C. (2000). Pierre-Simon Laplace, 1749-1827: a life in exact science. paperbacks. Press. p. 175.
 
[113]  , W. (1989). “Dark stars: the evolution of an idea”. In Hawking, S. W.; , W. 300 Years of Gravitation. Press.
 
[114]  Schwarzschild, K. (1916). “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 7: 189-196. and Schwarzschild, K. (1916). “Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 18: 424-434.
 
[115]  Droste, J. (1917). “On the field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field”. 19 (1): 197-215.
 
[116]  Kox, A. J. (1992). “General Relativity in the : 1915-1920”. In Eisenstaedt, J.; Kox, A. J. Studies in the history of general relativity. Birkhäuser. p. 41.
 
[117]  Venkataraman, G. (1992). Chandrasekhar and his limit. Universities Press. p. 89.
 
[118]  Detweiler, S. (1981). “Resource letter BH-1: Black holes”. American Journal of Physics 49 (5): 394-400.
 
[119]  Harpaz, A. (1994). Stellar evolution. A K Peters. p. 105.
 
[120]  Oppenheimer, J. R.; Volkoff, G. M. (1939). “On Massive Neutron Cores”. Physical Review 55 (4): 374-381.
 
[121]  Ruffini, R.; Wheeler, J. A. (1971). “Introducing the black hole”. Physics Today 24 (1): 30-41.
 
[122]  Finkelstein, D. (1958). “Past-Future Asymmetry of the Gravitational Field of a Point Particle”. Physical Review 110 (4): 965-967.
 
[123]  Kruskal, M. (1960). “Maximal Extension of Schwarzschild Metric”. Physical Review 119 (5): 1743.
 
[124]  Hewish, A. et al. (1968). “Observation of a Rapidly Pulsating Radio Source”. Nature 217 (5130): 709-713.
 
[125]  Pilkington, J. D. H. et al. (1968). “Observations of some further Pulsed Radio Sources”. Nature 218 (5137): 126-129.
 
[126]  Hewish, A. (1970). “Pulsars”. Annual Review of Astronomy and Astrophysics 8 (1): 265-296.
 
[127]  Newman, E. T. et al. (1965). “Metric of a Rotating, Charged Mass”. Journal of Mathematical Physics 6 (6): 918.
 
[128]  , W. (1967). “Event Horizons in Static Vacuum Space-Times”. Physical Review 164 (5): 1776.
 
[129]  Carter, B. (1971). “Axisymmetric Black Hole Has Only Two Degrees of Freedom”. Physical Review Letters 26 (6): 331.
 
[130]  Carter, B. (1977). “The vacuum black hole uniqueness theorem and its conceivable generalisations”. Proceedings of the 1st Marcel Grossmann meeting on general relativity. pp. 243-254.
 
[131]  Robinson, D. (1975). “Uniqueness of the Kerr Black Hole”. Physical Review Letters 34 (14): 905.
 
[132]  Heusler, M. (1998). “Stationary Black Holes: Uniqueness and Beyond”. Living Reviews in Relativity 1 (6). Archived from the original on 1999-02-03. Retrieved 2011-02-08.
 
[133]  Penrose, R. (1965). “Gravitational Collapse and Space-Time Singularities”. Physical Review Letters 14 (3): 57.
 
[134]  Ford, L. H. (2003). “The Classical Singularity Theorems and Their Quantum Loopholes”. International Journal of Theoretical Physics 42 (6): 1219.
 
[135]  Bardeen, J. M.; Carter, B.; Hawking, S. W. (1973). “The four laws of black hole mechanics”. Communications in Mathematical Physics 31 (2): 161-170.
 
[136]  Hawking, S. W. (1974). “Black hole explosions?”. Nature 248 (5443): 30-31.
 
[137]  Quinion, M. (26 April 2008). “Black Hole”. World Wide Words. Retrieved 2008-06-17.
 
[138]  Thorne, K. S.; Price, R. H. (1986). Black holes: the membrane paradigm. Press.
 
[139]  Anderson, Warren G. (1996). “The Black Hole Information Loss Problem”. Usenet Physics FAQ. Retrieved 2009-03-24.
 
[140]  Preskill, J. (1994-10-21). “Black holes and information: A crisis in quantum physics”. Caltech Theory Seminar.
 
[141]  Hawking & Ellis 1973, Appendix B.
 
[142]  Seeds, Michael A.; Backman, Dana E. (2007). Perspectives on Astronomy. Cengage Learning. p. 167.
 
[143]  Shapiro, S. L.; Teukolsky, S. A. (1983). Black holes, white dwarfs, and neutron stars: the physics of compact objects. John Wiley and Sons. p. 357.
 
[144]  Wald, R. M. (1997). “Gravitational Collapse and Cosmic Censorship”.
 
[145]  Berger, B. K. (2002). “Numerical Approaches to Spacetime Singularities”. Living Reviews in Relativity 5: 1. Retrieved 2007-08-04.
 
[146]  McClintock, J. E.; Shafee, R.; Narayan, R.; Remillard, R. A.; Davis, S. W.; Li, L.-X. (2006). “The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105”. Astrophysical Journal 652 (1): 518-539.
 
[147]  Lewis, G. F.; Kwan, J. (2007). “No Way Back: Maximizing Survival Time Below the Schwarzschild Event Horizon”. Publications of the Astronomical Society of 24 (2): 46-52.
 
[148]  Droz, S.; , W.; Morsink, S. M. (1996). “Black holes: the inside story”. Physics World 9 (1): 34-37.
 
[149]  Poisson, E.; , W. (1990). “Internal structure of black holes”. Physical Review D 41 (6): 1796.
 
[150]  Wald 1984, p. 212.
 
[151]  Hamade, R. (1996). “Black Holes and Quantum Gravity”. Relativity and Cosmology. . Retrieved 2009-03-26.
 
[152]  Palmer, D. “Ask an Astrophysicist: Quantum Gravity and Black Holes”. NASA. Retrieved 2009-03-26.
 
[153]  Nitta, Daisuke; , Takeshi; Sugiyama, Naoshi (September 2011). “Shadows of colliding black holes”. Physical Review D 84 (6).
 
[154]  Nemiroff, R. J. (1993). “Visual distortions near a neutron star and black hole”. American Journal of Physics 61 (7): 619.
 
[155]  Einstein, A. (1939). “On A Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses”. Annals of Mathematics 40 (4): 922-936.
 
[156]  Kerr, R. P. (2009). “The Kerr and Kerr-Schild metrics”. In Wiltshire, D. L.; Visser, M.; Scott, S. M. The Kerr Spacetime. Press.
 
[157]  Hawking, S. W.; Penrose, R. (January 1970). “The Singularities of Gravitational Collapse and Cosmology”. Proceedings of the Royal Society A 314 (1519): 529-548.
 
[158]  Rees, M. J.; Volonteri, M. (2007). “Massive black holes: formation and evolution”. In Karas, V.; Matt, G. Black Holes from Stars to Galaxies-Across the . Press. pp. 51-58.
 
[159]  Penrose, R. (2002). “Gravitational Collapse: The Role of General Relativity”. General Relativity and Gravitation 34 (7): 1141.
 
[160]  Carr, B. J. (2005). “Primordial Black Holes: Do They Exist and Are They Useful?”. In Suzuki, H.; Yokoyama, J.; Suto, Y. et al. Inflating Horizon of Particle Astrophysics and Cosmology. Press.
 
[161]  Giddings, S. B.; Thomas, S. (2002). “High energy colliders as black hole factories: The end of short distance physics”. Physical Review D 65 (5): 056010.
 
[162]  Harada, T. (2006). “Is there a black hole minimum mass?”. Physical Review D 74 (8): 084004.
 
[163]  Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. (1998). “The hierarchy problem and new dimensions at a millimeter”. Physics Letters B 429 (3-4): 263.
 
[164]  LHC Safety Assessment Group. “Review of the Safety of LHC Collisions”. CERN.
 
[165]  Cavaglià, M. (2010). “Particle accelerators as black hole factories?”. Einstein-Online (Max Planck Institute for Gravitational Physics (Albert Einstein Institute)) 4: 1010.
 
[166]  Vesperini, E.; McMillan, S. L. W.; d'Ercole, A. et al. (2010). “Intermediate-Mass Black Holes in Early Globular Clusters”. The Astrophysical Journal Letters 713 (1): L41-L44.
 
[167]  Zwart, S. F. P.; Baumgardt, H.; Hut, P. et al. (2004). “Formation of massive black holes through runaway collisions in dense young star clusters”. Nature 428 (6984): 724-6.
 
[168]  O'Leary, R. M.; Rasio, F. A.; Fregeau, J. M. et al. (2006). “Binary Mergers and Growth of Black Holes in Dense Star Clusters”. The Astrophysical Journal 637 (2): 937.
 
[169]  Page, D. N. (2005). “Hawking radiation and black hole thermodynamics”. New Journal of Physics 7: 203.
 
[170]  “Evaporating black holes?”. Einstein online. Max Planck Institute for Gravitational Physics. 2010. Retrieved 2010-12-12.
 
[171]  Giddings, S. B.; Mangano, M. L. (2008). “Astrophysical implications of hypothetical stable TeV-scale black holes”. Physical Review D 78 (3): 035009.
 
[172]  Peskin, M. E. (2008). “The end of the world at the Large Hadron Collider?”. Physics 1: 14.
 
[173]  “Ripped Apart by a Black Hole”. ESO Press Release. Retrieved 19 July 2013.
 
[174]  Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L. et al. (1994). “Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts”. Astrophysical Journal 434 (2): 557-559.
 
[175]  Naeye, R. “Testing Fundamental Physics”. NASA. Retrieved 2008-09-16.
 
[176]  “Event Horizon Telescope”. MIT Haystack Observatory. Retrieved 6 April 2012.
 
[177]  McClintock, J. E.; Remillard, R. A. (2006). “Black Hole Binaries”. In Lewin, W.; van der Klis, M. Compact Stellar X-ray Sources. Press.
 
[178]  Celotti, A.; Miller, J. C.; Sciama, D. W. (1999). “Astrophysical evidence for the existence of black holes”. Classical and Quantum Gravity 16 (12A): A3-A21.
 
[179]  Winter, L. M.; Mushotzky, R. F.; Reynolds, C. S. (2006). “XMM-Newton Archival Study of the Ultraluminous X-Ray Population in Nearby Galaxies”. The Astrophysical Journal 649 (2): 730.
 
[180]  , C. T. (1972). “Identification of Cygnus X-1 with HDE 226868”. Nature 235 (5336): 271-273.
 
[181]  Webster, B. L.; Murdin, P. (1972). “Cygnus X-1-a Spectroscopic Binary with a Heavy Companion ?”. Nature 235 (5332): 37-38.
 
[182]  Rolston, B. (10 November 1997). “The First Black Hole”. The bulletin. . Archived from the original on 2008-05-02. Retrieved 2008-03-11.
 
[183]  Shipman, H. L. (1 January 1975). “The implausible history of triple star models for Cygnus X-1 Evidence for a black hole”. Astrophysical Letters 16 (1): 9-12.
 
[184]  Narayan, R.; McClintock, J. (2008). “Advection-dominated accretion and the black hole event horizon”. New Astronomy Reviews 51 (10-12): 733.
 
[185]  “NASA scientists identify smallest known black hole” (Press release). . 2008-04-01. Retrieved 2009-03-14.
 
[186]  Krolik, J. H. (1999). Active Galactic Nuclei. Press. 1.2.
 
[187]  Sparke, L. S.; Gallagher, J. S. (2000). Galaxies in the Universe: An Introduction. Press. 9.1.
 
[188]  Kormendy, J.; Richstone, D. (1995). “Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei”. Annual Reviews of Astronomy and Astrophysics 33 (1): 581-624.
 
[189]  King, A. (2003). “Black Holes, Galaxy Formation, and the MBH-s Relation”. The Astrophysical Journal Letters 596 (1): 27-29.
 
[190]  Ferrarese, L.; Merritt, D. (2000). “A Fundamental Relation Between Supermassive Black Holes and their Host Galaxies”. The Astrophysical Journal Letters 539 (1): 9-12.
 
[191]  “A Black Hole's Dinner is Fast Approaching”. ESO Press Release. Retrieved 6 February 2012.
 
[192]  Gillessen, S.; Eisenhauer, F.; Trippe, S. et al. (2009). “Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center”. The Astrophysical Journal 692 (2): 1075.
 
[193]  Ghez, A. M.; Klein, B. L.; Morris, M. et al. (1998). “High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy”. The Astrophysical Journal 509 (2): 678.
 
[194]  Bozza, V. (2010). “Gravitational Lensing by Black Holes”. General Relativity and Gravitation 42 (42): 2269-2300.
 
[195]  Barack, L.; Cutler, C. (2004). “LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy”. Physical Review D 69 (69): 082005.
 
[196]  Kovacs, Z.; Cheng, K. S.; Harko, T. (2009). “Can stellar mass black holes be quark stars?”. Monthly Notices of the Royal Astronomical Society 400 (3): 1632-1642.
 
[197]  Kusenko, A. (2006). “Properties and signatures of supersymmetric Q-balls”.
 
[198]  Hansson, J.; Sandin, F. (2005). “Preon stars: a new class of cosmic compact objects”. Physics Letters B 616 (1-2): 1.
 
[199]  Kiefer, C. (2006). “Quantum gravity: general introduction and recent developments”. Annalen der Physik 15 (1-2): 129.
 
[200]  Skenderis, K.; Taylor, M. (2008). “The fuzzball proposal for black holes”. Physics Reports 467 (4-5): 117.
 
[201]  Hawking, S. W. (1971). “Gravitational Radiation from Colliding Black Holes”. Physical Review Letters 26 (21): 1344-1346.
 
[202]  Wald, R. M. (2001). “The Thermodynamics of Black Holes”. Living Reviews in Relativity 4 (6): 12119.
 
[203]  Strominger, A.; Vafa, C. (1996). “Microscopic origin of the Bekenstein-Hawking entropy”. Physics Letters B 379 (1-4): 99.
 
[204]  Carlip, S. (2009). “Black Hole Thermodynamics and Statistical Mechanics”. Lecture Notes in Physics. Lecture Notes in Physics 769: 89.
 
[205]  Hawking, S. W. “Does God Play Dice?”. www.hawking.org.uk. Retrieved 2009-03-14.
 
[206]  Giddings, S. B. (1995). “The black hole information paradox”. Particles, Strings and Cosmology. Johns Workshop on Current Problems in Particle Theory 19 and the PASCOS Interdisciplinary Symposium 5.
 
[207]  Mathur, S. D. (2011). “The information paradox: conflicts and resolutions”. XXV International Symposium on Lepton Photon Interactions at High Energies.
 
[208]  “The generally accepted explanation of the mass discrepancy is the proposal that spiral galaxies consist of a visible component surrounded by a more massive and extensive dark component ..” is stated in the introduction of the article: K.G. Begeman, A.H. Broeils, R.H.Sanders (1991). “Extended rotation curves of spiral galaxies: dark haloes and modified dynamics”. Monthly Notices of the Royal Astronomical Society 249: 523-537.
 
[209]  For an extensive discussion of the data and its fit to MOND see Mordehai Milgrom (2007). “The MOND Paradigm”.
 
[210]  Kuijken K., Gilmore G., 1989a, MNRAS, 239, 651.
 
[211]  Babcock, H, 1939, “The rotation of the Andromeda Nebula”, Lick Observatory bulletin ; no. 498
 
[212]  L. Volders. “Neutral hydrogen in M 33 and M 101”. Bulletin of the Astronomical Institutes of the 14 (492): 323-334.
 
[213]  V. Rubin, W. K. Ford, Jr (1970). “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions”. Astrophysical Journal 159: 379.
 
[214]  A. Bosma, “The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types”, PhD Thesis, Rijksuniversiteit Groningen, 1978, available online at the Nasa Extragalactic Database.
 
[215]  V. Rubin, N. Thonnard, W. K. Ford, Jr, (1980). “Rotational Properties of 21 Sc Galaxies with a Large and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)”. Astrophysical Journal 238: 471.
 
[216]  Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M. (May 10, 1996). “The Structure of Cold Dark Matter Halos”. The Astrophysical Journal 463: 563.
 
[217]  Merritt, David; Graham, Alister; Moore, Benjamin; Diemand, Jurg; Terzic, Balsa (20 December 2006). “Empirical Models for Dark Matter Halos”. The Astronomical Journal 132 (6): 2685-2700.
 
[218]  Merritt, David; et al. (May 2005). “A Universal Density Profile for Dark and Luminous Matter?”. The Astrophysical Journal 624 (2): L85-L88.
 
[219]  Reliance on Indirect Evidence Fuels Dark Matter Doubts: Scientific American
 
[220]  Weinberg, David H.; et, al. (2008). “Baryon Dynamics, Dark Matter Substructure, and Galaxies”. The Astrophysical Journal 678 (1): 6-21.
 
[221]  Duffy, Alan R.; al., et (2010). “Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles”. Monthly Notices of the Royal Astronomical Society 405 (4): 2161-2178.
 
[222]  W. J. G. de Blok, S. McGaugh (1997). “The dark and visible matter content of low surface brightness disc galaxies”. Monthly Notices of the Royal Astronomical Society 290: 533-552.
 
[223]  M. A. Zwaan, J. M. van der Hulst, W. J. G. de Blok, S. McGaugh (1995). “The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution”. Monthly Notices of the Royal Astronomical Society 273: L35-L38.
 
[224]  W. J. G. de Blok, A. Bosma (2002). “High-resolution rotation curves of low surface brightness galaxies”. Astronomy & Astrophysics 385 (3): 816-846.
 
[225]  de Blok, W. G. The Core Cusp Problem. “Dwarf Galaxy Cosmology” special issue of Advances in Astrophysics. 2009. [1].
 
[226]  Peter, Annika H. G. Dark Matter: A Brief Review. Proccedings of Science. 2012.
 
[227]  J. D. Bekenstein (2004). “Relativistic gravitation theory for the modified Newtonian dynamics paradigm”. Physical Review D 70 (8): 083509.
 
[228]  J. W. Moffat (2006). “Scalar tensor vector gravity theory”. Journal of Cosmology and Astroparticle Physics 3 (03): 4.
 
[229]  J. R. Brownstein and J. W. Moffat (2006). “Galaxy Rotation Curves Without Non-Baryonic Dark Matter”. Astrophysical Journal 636 (2): 721.
 
[230]  Chandra Press Room :: Chandra Casts Cloud On Alternative Theory :: October 22, 2002
 
[231]  M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, L. David, W. Forman, C. Jones, S. Murray, and W. Tucker. Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56.
 
[232]  M. Markevitch, S. Randall, D. Clowe, A. Gonzalez and M. Bradac (16-23 July 2006). “Dark Matter and the Bullet Cluster”. 36th COSPAR Scientific Assembly. . abstract only
 
[233]  Smith, J.M.; Van Ness, H.C., Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw Hill.
 
[234]  Haynie, Donald, T. (2001). Biological Thermodynamics. Press.
 
[235]  Crawford, F.H. (1963). Heat, Thermodynamics, and Statistical Physics, Rupert Hart-Davis, London, Harcourt, Brace & World, Inc., pp. 106-107.
 
[236]  Haase, R. (1963/1969). Thermodynamics of Irreversible Processes, translated in English, Addison-Wesley, , pp. 10-11.
 
[237]  Dugdale, J.S. (1998). Entropy and its Physical Meaning. Taylor and Francis.
 
[238]  Clausius, Rudolf (1850). On the Motive Power of Heat, and on the Laws which can be deduced from it for the Theory of Heat. Poggendorff's Annalen der Physik, LXXIX (Dover Reprint).
 
[239]  Sir William Thomson, LL.D. D.C.L., F.R.S. (1882). Mathematical and Physical Papers 1. , : C.J. Clay, M.A. & Son, Press. p. 232.
 
[240]  Hess, H. (1840). Thermochemische Untersuchungen, Annalen der Physik und Chemie (Poggendorff, ) 126(6): 385-404.
 
[241]  Gibbs, Willard, J. (1876). Transactions of the Connecticut Academy, III, pp. 108-248, Oct. 1875 - May 1876, and pp. 343-524, May 1877 - July 1878.
 
[242]  Duhem, P.M.M. (1886). Le Potential Thermodynamique et ses Applications, Hermann, Paris.
 
[243]  Lewis, Gilbert N.; Randall, Merle (1923). Thermodynamics and the Free Energy of Chemical Substances. McGraw-Hill Book Co. Inc.
 
[244]  Guggenheim, E.A. (1933). Modern Thermodynamics by the Methods of J.W. Gibbs, , .
 
[245]  Ilya Prigogine, I. & Defay, R., translated by D.H. Everett (1954). Chemical Thermodynamics. Longmans, Green & Co., . Includes classical non-equilibrium thermodynamics.
 
Show Less References

Article

Unified Field Theory and the Configuration of Particles

1Shanghai Jiaotong University

2Wayne State University

3Deerfield High School, Deerfield


International Journal of Physics. 2013, 1(6), 151-161
DOI: 10.12691/ijp-1-6-4
Copyright © 2013 Science and Education Publishing

Cite this paper:
Zhiliang Cao, Henry Gu Cao. Unified Field Theory and the Configuration of Particles. International Journal of Physics. 2013; 1(6):151-161. doi: 10.12691/ijp-1-6-4.

Correspondence to: Zhiliang  Cao, Shanghai Jiaotong University. Email: williamcao12252000@yahoo.com

Abstract

The Standard Model of particle physics is a theory concerning electromagnetic, weak, and strong nuclear interactions, which mediate the dynamics of known subatomic particles. The current formulation was finalized based on the existence of quarks. Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything". Mathematically, the standard model is a quantized Yang-Mills theory. Therefore, the Standard Model falls short of being a complete theory of fundamental fields. It neither explains force hierarchy nor predicts the structure of the universe. Fortunately, Unified Field Theory (UFT) explains fundamental forces and structures of sub-atomic particles and grand universe. One of the important applications of the Unified Field Theory is that the mass of each sub-atomic particle has a formula. These formulas are structural formulas which can calculate mass of the particles. The mass of a particle decides its structure and characteristics.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[[2]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[[3]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
 
[[4]  R. Oerter (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics (Kindle ed.). Penguin Group. p. 2.
 
[[5]  Sean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 59, Accessed Oct. 7, 2013, “...Standard Model of Particle Physics: The modern theory of elementary particles and their interactions ... It does not, strictly speaking, include gravity, although it's often convenient to include gravitons among the known particles of nature...”
 
Show More References
[6]  In fact, there are mathematical issues regarding quantum field theories still under debate (see e.g. Landau pole), but the predictions extracted from the Standard Model by current methods are all self-consistent. For a further discussion see e.g. Chapter 25 of R. Mann (2010). An Introduction to Particle Physics and the Standard Model. CRC Press.
 
[7]  S.L. Glashow (1961). “Partial-symmetries of weak interactions”. Nuclear Physics 22 (4): 579-588.
 
[8]  S. Weinberg (1967). “A Model of Leptons”. Physical Review Letters 19 (21): 1264-1266.
 
[9]  A. Salam (1968). , ed. “Elementary Particle Physics: Relativistic Groups and Analyticity”. Eighth Nobel Symposium. : Almquvist and Wiksell. p. 367.
 
[10]  F. Englert, R. Brout (1964). “Broken Symmetry and the Mass of Gauge Vector Mesons”. Physical Review Letters 13 (9): 321-323.
 
[11]  P.W. Higgs (1964). “Broken Symmetries and the Masses of Gauge Bosons”. Physical Review Letters 13 (16): 508-509.
 
[12]  G.S. Guralnik, C.R. Hagen, T.W.B. Kibble (1964). “Global Conservation Laws and Massless Particles”. Physical Review Letters 13 (20): 585-587.
 
[13]  F.J. Hasertet al. (1973). “Search for elastic muon-neutrino electron scattering”. Physics Letters B 46 (1): 121.
 
[14]  F.J. Hasert et al. (1973). “Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment”. Physics Letters B 46 (1): 138.
 
[15]  F.J. Hasert et al. (1974). “Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment”. Nuclear Physics B 73 (1): 1.
 
[16]  D. Haidt (4 October 2004). “The discovery of the weak neutral currents”. CERN Courier. Retrieved 8 May 2008.
 
[17]  “Details can be worked out if the situation is simple enough for us to make an approximation, which is almost never, but often we can understand more or less what is happening.” from The Feynman Lectures on Physics, Vol 1. pp. 2-7.
 
[18]  S. Braibant, G. Giacomelli, M. Spurio (2009). Particles and Fundamental Interactions: An Introduction to Particle Physics. Springer. pp. 313-314.
 
[19]  G.S. Guralnik (2009). “The History of the Guralnik, and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles”. International Journal of Modern Physics A 24 (14): 2601-2627.
 
[20]  B.W. Lee, C. Quigg, H.B. Thacker (1977). “Weak interactions at very high energies: The role of the Higgs-boson mass”. Physical Review D 16 (5): 1519-1531.
 
[21]  “Huge $10 billion collider resumes hunt for 'God particle'“. CNN. 11 November 2009. Retrieved 2010-05-04.
 
[22]  M. Strassler (10 July 2012). “Higgs Discovery: Is it a Higgs?”. Retrieved 2013-08-06.
 
[23]  “CERN experiments observe particle consistent with long-sought Higgs boson”. CERN. 4 July 2012. Retrieved 2012-07-04.
 
[24]  “Observation of a New Particle with a Mass of 125 GeV”. CERN. 4 July 2012. Retrieved 2012-07-05.
 
[25]  “ATLAS Experiment”. ATLAS. 1 January 2006. Retrieved 2012-07-05.
 
[26]  “Confirmed: CERN discovers new particle likely to be the Higgs boson”. YouTube. Today. 4 July 2012. Retrieved 2013-08-06.
 
[27]  D. Overbye (4 July 2012). “A New Particle Could Be Physics' Holy Grail”. New York Times. Retrieved 2012-07-04.
 
[28]  “New results indicate that new particle is a Higgs boson”. CERN. 14 March 2013. Retrieved 2013-08-06.
 
[29]  “BABAR Data in Tension with the Standard Model”. SLAC. 31 May 2012. Retrieved 2013-08-06.
 
[30]  BaBar Collaboration (2012). “Evidence for an excess of B ? D(*) t- ?t decays”. Physical Review Letters 109 (10): 101802.
 
[31]  “BaBar data hint at cracks in the Standard Model”. e! Science News. 18 June 2012. Retrieved 2013-08-06.
 
[32]  J. Bagdonaitel et al. (2012). “A Stringent Limit on a Drifting Proton-to-Electron Mass Ratio from Alcohol in the Early Universe”. Science 339 (6115): 46.
 
[33]  C. Moskowitz (13 December 2012). “Phew! Universe's Constant Has Stayed Constant”. Space.com. Retrieved 2012-12-14.
 
[34]  “Particle chameleon caught in the act of changing”. CERN. 31 May 2010. Retrieved 2012-07-05.
 
[35]  S. Weinberg (1979). “Baryon and Lepton Nonconserving Processes”. Physical Review Letters 43 (21): 1566.
 
[36]  P. Minkowski (1977). “µ ? e ? at a Rate of One Out of 109 Muon Decays?”. Physics Letters B 67 (4): 421.
 
[37]  R. N. Mohapatra, G. Senjanovic (1980). “Neutrino Mass and Spontaneous Parity Nonconservation”. Physical Review Letters 44 (14): 912-915.
 
[38]  M. Gell-Mann, P. Ramond and R. Slansky (1979). F. van Nieuwenhuizen and D. Z. Freedman, ed. Supergravity. . pp. 315-321.
 
[39]  http://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-hierarchy-problem/.
 
[40]  R. Barbieri, G. F. Giudice (1988). “Upper Bounds on Supersymmetric Particle Masses”. Nucl. Phys. B 306: 63.
 
[41]  Stephen P. Martin, A Supersymmetry Primer
 
[42]  K. Meissner, H. Nicolai (2006). “Conformal Symmetry and the Standard Model”. Physics Letters B648: 312-317.
 
[43]  Zee, A. (2003). Quantum field theory in a nutshell. Press.
 
[44]  N. Arkani-Hamed, , G. Dvali (1998). “The Hierarchy problem and new dimensions at a millimeter”. Physics Letters B429: 263-272.
 
[45]  N. Arkani-Hamed, , G. Dvali (1999). “Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity”. Physical Review D59: 086004.
 
[46]  For a pedagogical introduction, see M. Shifman (2009). “Large Extra Dimensions: Becoming acquainted with an alternative paradigm”. Crossing the boundaries: Gauge dynamics at strong coupling. : World Scientific.
 
[47]  M. Gogberashvili, Hierarchy problem in the shell universe model,
 
[48]  M. Gogberashvili, Our world as an expanding shell,
 
[49]  M. Gogberashvili, Four dimensionality in noncompact Kaluza-Klein model.
 
[50]  CMS Collaoration, “Search for Microscopic Black Hole Signatures at the Large Hadron Collider,” http://arxiv.org/abs/1012.3375.
 
[51]  P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), “The 2010 CODATA Recommended Values of the Fundamental Physical Constants” (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants [Thursday, 02-Jun-2011 21:00:12 EDT]. National Institute of Standards and Technology, .
 
[52]  W.N. Cottingham, D.A. Greenwood (1986). An Introduction to Nuclear Physics. Press. p. 19.
 
[53]  R.K. Adair (1989). The Great Design: Particles, Fields, and Creation. Press. p. 214.
 
[54]  J.-L. Basdevant, J. Rich, M. Spiro (2005). Fundamentals in Nuclear Physics. Springer. p. 155.
 
[55]  H. Nishino et al. (Kamiokande collaboration) (2009). “Search for Proton Decay via p ? e+ p0 and p ? µ+ p0 in a Large Water Cherenkov Detector”. Physical Review Letters 102 (14): 141801.
 
[56]  S.N. Ahmed et al. (SNO Collaboration) (2004). “Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory”. Physical Review Letters 92 (10): 102004.
 
[57]  A. Watson (2004). The Quantum Quark. Press. pp. 285-286.
 
[58]  W. Weise, A.M. Green (1984). Quarks and Nuclei. World Scientific. pp. 65-66.
 
[59]  S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert (21 November 2008). “Ab Initio Determination of Light Hadron Masses”. Science 322 (5905): 1224-7.
 
[60]  C. F. Perdrisat, V. Punjabi, M. Vanderhaeghen (2007). “Nucleon Electromagnetic Form Factors”. Prog Part Nucl Phys 59 (2): 694-764.
 
[61]  Sigfrido Boffi & Barbara Pasquini (2007). “Generalized parton distributions and the structure of the nucleon”. Rivista del Nuovo Cimento 30.
 
[62]  Randolf Pohl, Aldo Antognini, François Nez, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Luis M. P. Fernandes, Adolf Giesen, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, et al. (8 July 2010). “The size of the proton”. Nature 466 (7303): 213-216.
 
[63]  Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F. D.; Biraben, F.; Cardoso, J. M. R.; Covita, D. S.; Dax, A.; Dhawan, S.; Diepold, M.; Fernandes, L. M. P.; Giesen, A.; Gouvea, A. L.; Graf, T.; Hänsch, T. W.; Indelicato, P.; Julien, L.; Kao, C. -Y.; Knowles, P.; Kottmann, F.; Le Bigot, E. -O.; Liu, Y. -W.; Lopes, J. A. M.; Ludhova, L.; Monteiro, C. M. B.; Mulhauser, F.; Nebel, T.; Rabinowitz, P.; Dos Santos, J. M. F.; Schaller, L. A. (2013). “Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen”. Science 339 (6118): 417-420.
 
[64]  New proton measurements may throw physics a curve
 
[65]  “The Proton Just Got Smaller”. Photonics.Com. 12 July 2010. Retrieved 2010-07-19.
 
[66]  Researchers Observes Unexpectedly Small Proton Radius in a Precision Experiment
 
[67]  Headrick, J.M.; Diken, E.G.; Walters, R. S.; Hammer, N. I.; Christie, R.A. ; Cui, J.; Myshakin, E.M.; Duncan, M.A.; Johnson, M.A.; Jordan, K.D. (2005). “Spectral Signatures of Hydrated Proton Vibrations in Water Clusters”. Science 308 (5729): 1765-69.
 
[68]  R.H. Petrucci, W.S. Harwood, and F.G. Herring (2002). General Chemistry (8th ed.). p. 41.
 
[69]  Romer A (1997). “Proton or prouton? and the depths of the atom”. Amer. J. Phys. 65 (8): 707.
 
[70]  reported acceptance by the British Association in a footnote to a 1921 paper by O. Masson in the Philosophical Magazine (O. Masson, Phil. Mag. 41, 281, 1921).
 
[71]  Pais, Inward Bound, first edition, Oxford Press, 1986, page 296. Pais reported that he believed the first science literature use of the word proton occurs in the article Nature, 106: 357, 1920.
 
[72]  “Apollo 11 Mission”. Lunar and Planetary Institute. 2009. Retrieved 2009-06-12.
 
[73]  “Space Travel and Cancer Linked? Stony Brook Researcher Secures NASA Grant to Study Effects of Space Radiation”. Brookhaven National Laboratory. 12 December 2007. Retrieved 2009-06-12.
 
[74]  B. Shukitt-Hale, A. Szprengiel, J. Pluhar, B.M. Rabin, and J.A. Joseph. “The effects of proton exposure on neurochemistry and behavior”. Elsevier/COSPAR. Retrieved 2009-06-12.
 
[75]  N.W. Green and A.R. Frederickson. “A Study of Spacecraft Charging due to Exposure to Interplanetary Protons”. Jet Propulsion Laboratory. Retrieved 2009-06-12.
 
[76]  H. Planel (2004). Space and life: an introduction to space biology and medicine. CRC Press. pp. 135-138.
 
[77]  G. Gabrielse (2006). “Antiproton mass measurements”. International Journal of Mass Spectrometry 251 (2-3): 273-280.
 
[78]  1935 Nobel Prize in Physics. Nobelprize.org. Retrieved on 2012-08-16.
 
[79]  Sir James Chadwick’s Discovery of Neutrons. ANS Nuclear Cafe. Retrieved on 2012-08-16.
 
[80]  Nakamura, K (2010). “Review of Particle Physics”. Journal of Physics G: Nuclear and Particle Physics 37 (7A): 075021.
 
[81]  Nudat 2. Nndc.bnl.gov. Retrieved on 2010-12-04.
 
[82]  E. Rutherford (1920). “Nuclear Constitution of Atoms”. Proceedings of the Royal Society A 97: 374.
 
[83]  Rutherford, E. (1920). “Bakerian Lecture. Nuclear Constitution of Atoms”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 97 (686): 374.
 
[84]  Brown, Laurie M. (1978). “The idea of the neutrino”. Physics Today 31 (9): 23.
 
[85]  Friedlander G., Kennedy J.W. and Miller J.M. (1964) Nuclear and Radiochemistry (2nd edition), Wiley, pp. 22-23 and 38-39.
 
[86]  “V. A. Ambartsumian-a life in science”. Astrophysics 51 (3): 280. 2008.
 
[87]  Bothe, W.; Becker, H. (1930). “Künstliche Erregung von Kern-?-Strahlen” [Artificial excitation of nuclear ?-radiation]. Zeitschrift für Physik 66 (5-6): 289.
 
[88]  Becker, H.; Bothe, W. (1932). “Die in Bor und Beryllium erregten ?-Strahlen” [G-rays excited in boron and beryllium]. Zeitschrift für Physik 76 (7-8): 421.
 
[89]  Joliot-Curie, Irène and Joliot, Frédéric (1932). “Émission de protons de grande vitesse par les substances hydrogénées sous l'influence des rayons ? très pénétrants” [Emission of high-speed protons by hydrogenated substances under the influence of very penetrating ?-rays]. Comptes Rendus 194: 273.
 
[90]  Chadwick, J. (1933). “Bakerian Lecture. The Neutron”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 142 (846): 1.
 
[91]  Chadwick, James (1932). “Possible Existence of a Neutron”. Nature 129 (3252): 312.
 
[92]  “Das Jahr 1932 Die Entdeckung des Neutrons”. Wolfgang Pauli. Sources in the History of Mathematics and Physical Sciences 6. 1985. p. 105.
 
[93]  Atkins, P.W. and J. de Paula, P.W. (2006) “Atkins' Physical Chemistry” (8th edition), W.H. Freeman, p. 451.
 
[94]  Herzberg, G. (1950) Spectra of Diatomic Molecules (2nd edition), van Nostrand Reinhold, pp. 133-140.
 
[95]  Particle Data Group Summary Data Table on Baryons. lbl.gov (2007). Retrieved on 2012-08-16.
 
[96]  Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach, Third Edition K. Heyde Taylor & Francis 2004.
 
[97]  “Pear-shaped particles probe big-bang mystery” (Press release). . 20 February 2006. Retrieved 2009-12-14.
 
[98]  A cryogenic experiment to search for the EDM of the neutron. Hepwww.rl.ac.uk. Retrieved on 2012-08-16.
 
[99]  Search for the neutron electric dipole moment: nEDM. Nedm.web.psi.ch (2001-09-12). Retrieved on 2012-08-16.
 
[100]  SNS Neutron EDM Experiment. P25ext.lanl.gov. Retrieved on 2012-08-16.
 
[101]  Measurement of the Neutron Electric Dipole Moment. Nrd.pnpi.spb.ru. Retrieved on 2012-08-16.
 
[102]  Miller, G.A. (2007). “Charge Densities of the Neutron and Proton”. Physical Review Letters 99 (11): 112001.
 
[103]  Spyrou, A.; et al. (2012). “First Observation of Ground State Dineutron Decay: 16Be”. Physical Review Letters 108: 102501.
 
[104]  Felipe J. Llanes-Estrada, Gaspar Navarro., Felipe J.; Gaspar Navarro (2011). “Cubic neutrons”.
 
[105]  Byrne, J. Neutrons, Nuclei, and Matter, Publications, , 2011, ISBN 0486482383, pp. 32-33.
 
[106]  Clowdsley, MS; Wilson, JW; Kim, MH; Singleterry, RC; Tripathi, RK; Heinbockel, JH; Badavi, FF; Shinn, JL (2001). “Neutron Environments on the Martian Surface”. Physica Medica 17 (Suppl 1): 94-6.
 
[107]  Science/Nature | Q&A: Nuclear fusion reactor. BBC News (2006-02-06). Retrieved on 2010-12-04.
 
[108]  Byrne, J. Neutrons, Nuclei, and Matter, Publications, , 2011.
 
[109]  Kumakhov, M. A.; Sharov, V. A. (1992). “A neutron lens”. Nature 357 (6377): 390-391.
 
[110]  Physorg.com, “New Way of 'Seeing': A 'Neutron Microscope'”. Physorg.com (2004-07-30). Retrieved on 2012-08-16.
 
[111]  “NASA Develops a Nugget to Search for Life in Space”. NASA.gov (2007-11-30). Retrieved on 2012-08-16.
 
[112]  “Facing up to secondary neutrons”. Medical Physics Web. May 23, 2008. Retrieved 2011-02-08.
 
[113]  Heilbronn, L.; Nakamura, T; Iwata, Y; Kurosawa, T; Iwase, H; Townsend, LW (2005). “Expand+Overview of secondary neutron production relevant to shielding in space”. Radiation Protection Dosimetry 116 (1-4): 140-143.
 
[114]  Rujula, Georgi, Glashow (1975) “Hadron Masses in Gauge Theory.” Physical Review D12, p.147.
 
[115]  H. Georgi. (1990) “Vector Realization of Chiral Symmetry.” inSPIRE Record.
 
[116]  C. Amsler et al. (2008): Quark Model.
 
[117]  J. Beringer et al. (Particle Data Group) (2012). “PDGLive Particle Summary 'Leptons (e, mu, tau, ... neutrinos ...)'”. Particle Data Group. Retrieved 2013-01-12.
 
[118]  New Evidence for the Existence of a Particle Intermediate Between the Proton and Electron, Phys. Rev. 52, 1003 (1937).
 
[119]  Yukaya Hideka, On the Interaction of Elementary Particles 1, Proceedings of the Physico-Mathematical Society of (3) 17, 48, pp 139-148 (1935). (Read 17 November 1934).
 
[120]  S. Carroll (2004). Spacetime and Geometry: An Introduction to General Relativity. Wesly. p. 204.
 
[121]  Mark Wolverton (September 2007). “Muons for Peace: New Way to Spot Hidden Nukes Gets Ready to Debut”. Scientific American 297 (3): 26-28.
 
[122]  “Physicists Announce Latest Muon g-2 Measurement” (Press release). Brookhaven National Laboratory. 30 July 2002. Retrieved 2009-11-14.
 
[123]  J. Adam et al. (MEG Collaboration) (2013). “New Constraint on the Existence of the mu+ -> e+ gamma Decay”. Physical Review Letters 110 (20): 201801.
 
[124]  Fleming, D. G.; Arseneau, D. J.; Sukhorukov, O.; Brewer, J. H.; Mielke, S. L.; Schatz, G. C.; Garrett, B. C.; Peterson, K. A. et al. (28 Jan 2011). “Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2”. Science 331 (6016): 448-450.
 
[125]  TRIUMF Muonic Hydrogen collaboration. “A brief description of Muonic Hydrogen research”. Retrieved 2010-11-7.
 
[126]  Pohl, Randolf et al. “The Size of the Proton” Nature 466, 213-216 (8 July 2010).
 
[127]  “The Muon g-2 Experiment Home Page”. G-2.bnl.gov. 2004-01-08. Retrieved 2012-01-06.
 
[128]  “(from the July 2007 review by Particle Data Group)” (PDF). Retrieved 2012-01-06.
 
[129]  Hagiwara, K; Martin, A; Nomura, D; Teubner, T (2007). “Improved predictions for g-2g-2 of the muon and aQED(MZ2)”. Physics Letters B 649 (2-3): 173.
 
[130]  L. B. Okun (1980). Leptons and Quarks. V.I. Kisin (trans.). North-Holland Publishing. p. 103.
 
[131]  Perl, M. L.; Abrams, G.; Boyarski, A.; Breidenbach, M.; Briggs, D.; Bulos, F.; Chinowsky, W.; Dakin, J. et al. (1975). “Evidence for Anomalous Lepton Production in e+e- Annihilation”. Physical Review Letters 35 (22): 1489.
 
[132]  J. Beringer et al. (Particle Data Group) (2012). Leptons. “Review of Particle Physics”. Journal of Physics G 86 (1): 581-651.
 
[133]  D. Fargion, P.G. De Sanctis Lucentini, M. De Santis, M. Grossi (2004). “Tau Air Showers from Earth”. The Astrophysical Journal 613 (2): 1285.
 
[134]  M.L. Perl (1977). “Evidence for, and properties of, the new charged heavy lepton”. In T. Thanh Van (ed.). Proceedings of the XII Rencontre de Moriond. SLAC-PUB-1923.
 
[135]  Riazuddin (2009). “Non-standard interactions”. NCP 5th Particle Physics Sypnoisis (,: Riazuddin, Head of High-Energy Theory Group at for Physics) 1 (1): 1-25.
 
[136]  Brodsky, Stanley J.; Lebed, Richard F. (2009). “Production of the Smallest QED Atom: True Muonium (µ+µ-)”. Physical Review Letters 102 (21): 213401.
 
[137]  S. Fukuda et al., hep-ex/0103032, Phys. Rev. Lett. 86,5651 (2001); hep-ex/0103033, Phys. Rev. Lett. 86, 5656(2001).
 
[138]  Q. R. Ahmad et al.,, nucl-ph/0106015, Phys. Rev. Lett.87, 071301 (2001).
 
[139]  B. T. Cleveland, T. J. Daily, R. Davis, Jr., J. R. Distel,K. Lande, C. K. Lee, and P. S. Wildenhain, Astrophys.J. 496, 505 (1998).
 
[140]  J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, V. V. Gorbachev,T. V. Ibragimova, A. V. Kalikhov, N. G. Khairnasov,T. V. Knodel, I. N. Mirmov, A. A. Shikhin, E. P.Veretenkin, V. M. Vermul, V. E. Yants, G. T. Zatsepin,T.J. Bowles, W. A. Teasdale, D. L. Wark, M. L. Cherry, J.S. Nico, B. T. Cleveland, R. Davis, Jr., K. Lande, and P.S. Wildenhain, S. R. Elliott and J. F. Wilkerson, astroph/9907113, Phys. Rev. C 60, 055801 (1999).
 
[141]  W. Hampel, J. Handt, G. Heusser, J. Kiko, T. Kirsten,M. Laubenstein, E. Pernicka, W. Rau, M. Wojcik, Y. Zakharov,R. v. Ammon, K. H. Ebert, T. Fritsch, E. Henrich,L. Stielglitz, F. Weirich, M. Balata, M. Sann, F. X.Hartmann, E. Bellotti, C. Cattadori, O. Cremonesi, N.Ferrari, E. Fiorini, L. Zanotti, M. Altmann, F. v. Feilitzsch,R. M¨oßbauer, S. W¨anninger, G. Berthomieu, E.Schatzmann, I. Carmi, I. Dostrovsky, C. Bacci, P. Belli,R. Bernabei, S. d’Angelo, L. Paoluzi, M. Cribier, J. Rich,M. Spiro, C. Tao, D. Vignaud, J. Boger, R. L.Hahn, J.K. Rowley, R. W. Stoenner, and J. Weneser, Phys. Lett.B 447, 127 (1999).
 
[142]  Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996).
 
[143]  See www.sns.ias.edu/jnb/Meetings/Lownu/index.htmland www-sk.icrr.u-tokyo.ac.jp/lownu/index.html.
 
[144]  V. A. Kuzmin, Zh. Eksp. Teor. Fiz. 49, 1532 (1965) (Sov.Phys. JETP 22, 1051 (1966)).
 
[145]  J. N. Bahcall, M. H. Pinsonneault, and , astroph/0010346, Astrophys. J. 555, 990 (2001).
 
[146]  A. S. Brun, S. Turck-Chi`eze, and P. Morel, astroph/9806272, Astrophys. J. 506, 913 (1998).
 
[147]  A. Piepke, Nucl. Phys. B (Proc. Suppl.) 91, 99 (2001).
 
[148]  G. Alimonti et al., (BOREXINO collaboration), hepex/0012030, Astroparticle Physics 16, 205 (2002).
 
[149]  M. Altmann, M. Balata, P. Belli, E. Bellotti, R. Bernabei,E. Burkert, C. Cattadori, G. Cerichelli, M Chiarini,M. Cribier, S. d’Angelo, G. Del Re, K. H. Ebert, F. v.Feilitzsch, N. Ferrari, W. Hampel, J. Handt, E. Henrich,G. Heusser, J. Kiko, T. Kirsten, T. Lachenmaier, J. Lanfranchi,M. Laubenstein, D. Motta, W. Rau, H. Richter,S. W¨anninger, M. Wojcik, L. Zanotti, hep-ex/0006034,Phys. Lett. 490, 16 (2000).
 
[150]  V. N. Gavrin, V. N. Kornoukhov, and G. T. Zatsepin,Institute for Nuclear Research of the of the Report No. P-0690, 1991.
 
[151]  V. N. Gavrin, V. E. Gurentsov, V. N. Kornoukhov, A.1 February 2008 SAGE JETP 12M. Pshukov, and A. A. Shikhin, Institute for NuclearResearch of the of of the ReportNo. P-0698, 1991.
 
[152]  J. N. Abdurashitov, V. N. Gavrin, A. V. Kalikhov, V.L. Matushko, A. A. Shikhin, V. E. Yants, and O. S.Zaborskaya, to be published in Proceedings of the XIthInt. School on Particles and Cosmology, ,April 2001.
 
[153]  J. N. Abdurashitov, E. L. Faizov, V. N. Gavrin, A. O. Gusev,A. V. Kalikhov, T. V. Knodel, I. I. Knyshenko, V. N.Kornoukhov, I. N. Mirmov, A. M. Psukhov, A. M. Shalagin,A. A. Shikhin, P. V. Timofeyev, E. P. Veretenkin, V.M. Vermul, G. T. Zatsepin, T. J. Bowles, S. R. Elliott, J.S. Nico, W. A. Teasdale, D. L. Wark, J. F. Wilkerson, B.T. Cleveland, T. Daily, R. Davis, K. Lande, C. K. Lee,P. S. Wildenhain, M. L. Cherry, and R. T. Kouzes, Phys.Lett. B 328, 234 (1994).
 
[154]  S. R. Elliott, Nucl. Instrum. Methods Phys. Res. A 290,158 (1990).
 
[155]  B. T. Cleveland, Nucl. Instrum. Methods Phys. Res. 214,451 (1983).
 
[156]  B. T. Cleveland, Nucl. Instrum. Methods Phys. Res. A416, 405 (1998).
 
[157]  V. N. Gavrin, Proceedings of the XIXth InternationalConf. on Neutrino Physics and Astrophysics, Sudbury,Canada, 16-21 June 2000, ed. by J. Law, R. W. Ollerhead,and J. J. Simpson, Nucl. Phys. B (Proc. Suppl.)91, 36 (2000).
 
[158]  V. N. Gavrin, V. N. Kornoukhov, and V. E. Yants, Institutefor Nuclear Research of the of the Report No. P-0703, 1991.
 
[159]  V. N. Gavrin, S. N. Danshin, A. V. Kopylov, and V.E. Cherekhovsky, Institute for Nuclear Research of theAcademy of Sciences of the USSR Report No. P-0494,1986.
 
[160]  V. N. Gavrin and Yu. I. Zacharov, Institute for NuclearResearch of the of of the ReportNo. P-0560, 1987.
 
[161]  M. Cribier, B. Pichard, J. Rich, J. P. Soirat, M. Spiro,Th. Stolarczyk, C. Tao, D. Vignaud, P. Anselmann, A.Lenzing, C. Schlosser, R. Wink, and J. K. Rowley, Astropart.Phys. 6, 129 (1997).
 
[162]  V. N. Gavrin, V. V. Gorbachev, T. V. Ibragimova, and B.T. Cleveland, Yad. Phys. 65, 1309 (2002); Phys. AtomicNuclei 65, 1276 (2002).
 
[163]  J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, V. V. Gorbachev,T. V. Ibragimova, A. V. Kalikhov, N. G. Khairnasov,T. V. Knodel, V. N. Kornoukhov, I. N.Mirmov, A.A. Shikhin, E. P. Veretenkin, V. M. Vermul, V. E. Yants,G. T. Zatsepin, T. J. Bowles, J. S. Nico, W. A. Teasdale,D. L. Wark, M. L. Cherry, V. N. Karaulov, V. L. Levitin,V. I. Maev, P. I. Nazarenko, V. S. Shkol’nik, N. V. Skorikov,B. T. Cleveland, T. Daily, R. Davis, Jr., K. Lande,C. K. Lee, P. S. Wildenhain, Yu. S. Khomyakov, A. V.Zvonarev, S. R. Elliott, and J. F. Wilkerson, Phys. Rev.Lett. 77, 4708 (1996).
 
[164]  J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, V. V.Gorbachev, T. V. Ibragimova, A. V. Kalikhov, N. G.Khairnasov, T. V. Knodel, V. N. Kornoukhov, I. N. Mirmov,A. A. Shikhin, E. P. Veretenkin, V. M. Vermul,V. E. Yants, G. T. Zatsepin, Yu. S. Khomyakov, A. V.Zvonarev, T. J. Bowles, J. S. Nico, W. A. Teasdale, D. L.Wark, M. L. Cherry, V. N. Karaulov, V. L. Levitin, V. I.Maev, P. I. Nazarenko, V. S. Shkol’nik, N. V. Skorikov,B. T. Cleveland, T. Daily, R. Davis, Jr., K. Lande, C. K.Lee, P. S. Wildenhain, S. R. Elliott, and J. F. Wilkerson,hep-ph/9803418, Phys. Rev. C. 59, 2246 (1999).
 
[165]  W. Hampel and L. Remsberg, Phys. Rev. C 31, 666(1985).
 
[166]  V. Berezinsky, G. Fiorentini, and M. Lissia, hepph/9904225, Astropart. Phys. 12, 299 (2000).
 
[167]  G. L. Fogli, , D. Montanino, and A. Palazzo, hepph/9910387, Phys. Rev. D 61, 073009 (2000).
 
[168]  J. Pulido and E. Kh. Akhmedov, hep-ph/9907399, Astropart.Phys. 13, 227 (2000).
 
[169]  P. A. Sturrock and J. D. Scargle, astro-ph/0011228, Astrophys.J. 550, L101-L104 (2001).
 
[170]  J. N. Bahcall, hep-ph/0108148, Phys. Rev. C 65 025801(2002).
 
[171]  J. N. Bahcall, hep-ph/9710491, Phys. Rev. C 56, 3391(1997).
 
[172]  J. N. Bahcall et al., nucl-th/9601044, Phys. Rev. C 54,411 (1996).
 
[173]  J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Pe˜na-Garay, hep-ph/0111150, JHEP 0204, 007 (2002).
 
[174]  After the appearance of our preprint we learned that similararguments to ours have been used to make predictionsfor what will be measured by BOREXINO. See S.M. Bilenky, T. Lachenmaier, , and F. v. Feilitzsch,hep-ph/0109200, Phys. Lett. 533, 191 (2002).
 
[175]  J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Pe˜na-Garay, hep-ph/0106258, JHEP 0108, 014 (2001).
 
[176]  P. I. Krastev and A. Yu. Smirnov, hep-ph/0108177, Phys.Rev. D 65, 073022 (2002).
 
[177]  M.C. Gonzalez-Garcia, M. Maltoni, and C. Pe˜na-Garay,hep-ph/0108073.
 
Show Less References

Article

Can Time in Special Relativity Appear Frozen despite the Clock Hypothesis Says it Cannot?

1B&E Scientific Ltd, United Kingdom


International Journal of Physics. 2013, 1(6), 146-150
DOI: 10.12691/ijp-1-6-3
Copyright © 2013 Science and Education Publishing

Cite this paper:
Arne Bergstrom. Can Time in Special Relativity Appear Frozen despite the Clock Hypothesis Says it Cannot?. International Journal of Physics. 2013; 1(6):146-150. doi: 10.12691/ijp-1-6-3.

Correspondence to: Arne  Bergstrom, B&E Scientific Ltd, United Kingdom. Email: arne.bergstrom@physics.org

Abstract

According to general relativity, time in a gravitational field will appear slowed down, or close to a black hole even frozen to complete standstill. From an assumed equivalence between gravity and acceleration, one might thus expect that time in special relativity could similarly appear to be slowed down, or even frozen, when observing a system in strong acceleration even at moderate relativistic velocities. Specifically, this would seem to be the case for hyperbolic space time motion when accelerated motion takes place along a hyperbola corresponding to constant time in the Minkowski diagram. On the other hand, the original postulates in Einstein’s theory of special relativity are today normally supplemented with a new postulate, the clock hypothesis, stating that time is unaffected by accelerations. The present study concludes that there is however no inconsistency here: Without being in conflict with the clock hypothesis, time can still appear to be slowed down or even frozen in the special case of hyperbolic motion. This is then due to the special scaling properties of this type of motion, which happen to imitate a constant acceleration. Slowing-down of time can thus occur not only at extreme velocities close to light speed, but also at moderate relativistic velocities for sufficiently powerful accelerations.

Keywords

References

[[[[[[[[[[
[[1]  Barton G 1999, Introduction to the Relativity Principle (Wiley), Ch. 6.
 
[[2]  Misner C, Thorne K, and Wheeler J 1973, Gravitation (Freeman), Exercise 6.3 (b), p. 167.
 
[[3]  Misner C, Thorne K, and Wheeler J 1973, Gravitation (Freeman), Ch. 6.
 
[[4]  Barton G 1999, Introduction to the Relativity Principle (Wiley), Ch. 8.
 
[[5]  Rindler W 2001, Relativity: Special, General and Cosmological (Oxford University Press).
 
Show More References
[6]  http://en.wikipedia.org/wiki/Rindler_coordinates.
 
[7]  Pauli W 1981, Theory of Relativity (Dover), p. 10.
 
[8]  Aharoni J 1985, The Special Theory of Relativity (Dover), Ch. 1.9.
 
[9]  Møller C, The Theory of Relativity 2nd Ed (Oxford University Press), p. 37.
 
[10]  Misner C, Thorne K, and Wheeler J 1972, Gravitation (Freeman 1973), p. 166.
 
[11]  Mainwaring S and Stedman G 1993, Phys. Rev. A, 47 3611.
 
[12]  http://en.wikipedia.org/wiki/Equivalence_principle.
 
[13]  Einstein A 1911, Ann. Phys., 35 898, Eng. transl. in The Principle of Relativity (Dover 1952).
 
[14]  Bailey J et al. 1977, Nature, 268 301.
 
[15]  Roos C et al. 1980, Nature, 286 24.
 
Show Less References

Article

Our Sub-Universe, the Wider Universe, and Their Properties

1Division of Economics, Nanyang Technological University, Singapore


International Journal of Physics. 2013, 1(6), 138-145
DOI: 10.12691/ijp-1-6-2
Copyright © 2013 Science and Education Publishing

Cite this paper:
Yew-Kwang Ng. Our Sub-Universe, the Wider Universe, and Their Properties. International Journal of Physics. 2013; 1(6):138-145. doi: 10.12691/ijp-1-6-2.

Correspondence to: Yew-Kwang  Ng, Division of Economics, Nanyang Technological University, Singapore. Email: ykng@ntu.edu.sg

Abstract

Following on from an argument that our finite (sub) universe from the Big Bang was created by a natural ‘God’ (thus differing from the supernatural God of the religion) that evolved in the wider universe, this paper argues that our sub-universe is only a small part of the wider universe defined to include everything. From compelling axioms, the wider universe is infinitely old, infinitely large, and was not created but exists by itself naturally from eternity. The question ‘why is there the wider universe?’ is meaningless or at least does not have an answer. Given the first law of thermodynamics, something must have existed for ever. Different conceptions of this ever-existing thing are compared and the conception of the present paper argued to be compelling. The recent report [1] on pre-Big Bang rings of radiation supports the conception of the present paper.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Gurzadyan, V.G. & Penrose, R. , “Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity”,Cosmology and Extragalactic Astrophysics (astro-ph.CO); General Relativity and Quantum Cosmology (gr-qc). 2010. arXiv: 1011.3706v1.
 
[[2]  Joseph, R., “The infinite universe vs the myth of the Big Bang: Red shifts, black holes, acceleration, life”, Journal of Cosmology, 2010, Vol 6, 1548-1615.
 
[[3]  Kroupa, P., Pawlowski, M. & Milgrom, M., International Journal of Modern Physics, D, 21, 2012, 1230003.
 
[[4]  Penrose, R., “Quantum theory and cosmology”, In Connes, A., Heller, M., Majid, S. (Ed.), Penrose, R., Polkinghorne, J., Taylor, A. (2008). On Space and Time, Cambridge: Cambridge University Press, 2008.
 
[[5]  Taylor, A. N. “The dark universe”, In Connes, op cit.
 
Show More References
[6]  Basilakos, S. & Lima, J. A. S., “Constraints on cold dark matter accelerating cosmologies and cluster formation”, Phys. Rev. D 82, 2012, 023504.
 
[7]  Steinhardt, P. J. And Turok, N., “The cyclic universe: an informal introduction”, Nuclear Physics Proceedings Supplement, 2003, 124:38-49, Cite as: arXiv:astro-ph/0204479v1.
 
[8]  Penrose, R., Cycles of Time. London: Bodley Head, 2011.
 
[9]  Hoyle, F., The Intelligent Universe. 1983, London: Michael Joseph.
 
[10]  Wheeler, J. A., “From relativity to mutability”. In Mehra, J. (Ed.): The Physicist’s Conception of Nature. Dordrecht, Boston: Reidel 1973, p. 202-47.
 
[11]  Linde, A., “The self-reproducing inflationary universe”, Scientific American, 1994, 271 (5): 32-9.
 
[12]  Smolin, L., The Life of the Cosmos. Oxford University Press, 1997.
 
[13]  Smolin, Lee, “A Perspective on the landscape problem”, Foundations of Physics, 2013, 43(1): 21-45.
 
[14]  Steinhardt, P. J. And Turok, N., Endless Universe. New York: Doubleday, 2007.
 
[15]  Crick, F. H. C., Life Itself: Its Origin and Nature. New York: Simon and Schuster, 1981.
 
[16]  Joseph, R. & Schild, R., “Biological cosmology and the origins of life in the universe”, Journal of Cosmology, 2010, 5: 1040-1090.
 
[17]  Watson, J. D. and Crick, F. H. C., “A structure for deoxyribose nucleic acid. Nature”, 1953, 171: 737-8.
 
[18]  Watson, J. D., The Double Helix: A Personal Account of the Discovery of the Structure of DNA. London: Weidenfeld & Nicolson, 1968.
 
[19]  Gibson, D. G., Glass, J. I., Lartigue, C., et al., “Creation of a bacterial cell controlled by a chemically synthesized genome”, Science Express, published online May 20, 2010; 10.1126/science.1190719.
 
[20]  Walker, M. A. And Ćirković, M. M., “Astrophysical fine tuning, naturalism, and the contemporary design argument”, International Studies in the Philosophy of Science, 2006, 20(3): 285-307.
 
[21]  Davies, Paul C. W., The Goldilocks Enigma: Why Is the Universe Just Right for Life? Penguin: Allen Lane, 2007.
 
[22]  Pitts, J. B., “Why the Big Bang singularity does not help the Kalām cosmological argument for theism”, British Journal for the Philosophy of Science, 2008, 59: 675-708.
 
[23]  Hawking, S.W., “The edge of spacetime”, in Paul Davies (ed.), The New Physics, Cambridge: Cambridge University Press, 1989.
 
[24]  Collins, F. S. (2006). The Language of God. New York: Free Press.
 
[25]  Hawking, S. W., A Brief History of Time: From the Big Bang to Black Holes. New York: Bantam, 1988.
 
[26]  Hawking, S. W. & Mlodinow, L., The Grand Design, Bantam Books/Random House, 2010.
 
[27]  Zinkernagel, H., “Did time have a beginning?” International Studies in the Philosophy of Science, 2008, 22(3): 237-58.
 
[28]  Peltola,A. & Kunstatter, G., “Complete single-horizon quantum corrected black hole spacetime”, Physical Review D, 2009, 79, 061501.
 
[29]  Stenger, V. J., Has Science Found God?. Prometheus Books, 2003. See also www.colorado.edu/philosophy/vstenger/Found/Found.ppt#319,4, First Law of Thermodynamics.
 
[30]  Ostriker, J. P. & Steinhardt, P. J., “The quintessential universe”, Scientific American, 2001, 46-53.
 
[31]  Stenger, V. J., “Intelligent design: The new stealth creationism”, Web article, 2000.
 
[32]  Marinov, M. S. & Popov, V. S., “Electron-positron pair creation from vacuum induced by variable electric field”, Fortechritte der Physik, 1977, 373-400.
 
[33]  Ivanov, L. N. & Zueva, T. V., “Creation of electron-positron pairs in the collision of heavy atomic nuclei. Systematic quantum-mechanical approach”, Russian Physics Journal, 1990, 33(8): 704-712. (Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8: 97-107, August, 1990.)
 
[34]  Alkofer, R., Hecht, M. B., Roberts, C. D., Schmidt, S. M. & Vinnik, D. V., “Pair creation and an X-ray free electron laser.” Physical Review Letters, 2001, 87(19): id. 193902.
 
[35]  Tryon, E. P., “Is the universe a vacuum fluctuation”, Nature, Dec. 14, 1973, 246: 396-397. Reprinted in Modern Cosmology and Philosophy (1998), ed. Leslie, John (New York: Prometheus), pp. 222-225.
 
[36]  Guth, A. H., “The inflationary universe: A possible solution to the horizon and flatness problems”, Physical Review D, 1981, 23: 347.
 
[37]  Guth, A. H., The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. London: Jonathan Cape, 1997.
 
[38]  Stenger, V. J., “The universe: The ultimate free lunch”, European Journal of Physics, 1990, 11: 236-43.
 
[39]  Fraser, D., “Quantum field theory: Underdetermination, inconsistency, and idealization, Philosophy of Science, 2009, 76: 536-67.
 
[40]  Gomatam, R., “Niels Bohr’s interpretation and the Coperhagen interpretation – Are the two incompatible?”, Philosophy of Science, 2007, 74: 736-48.
 
[41]  Grinbaum, A., R”econstructing instead of interpreting Quantum Theory”, Philosophy of Science, 2007, 74: 761-74.
 
Show Less References

Article

Is CMB just an Observational Effect of a Universe in Accelerated Expansion?

1B&E Scientific Ltd, BN25 4PA, United Kingdom


International Journal of Physics. 2013, 1(6), 133-137
DOI: 10.12691/ijp-1-6-1
Copyright © 2013 Science and Education Publishing

Cite this paper:
Arne Bergstrom. Is CMB just an Observational Effect of a Universe in Accelerated Expansion?. International Journal of Physics. 2013; 1(6):133-137. doi: 10.12691/ijp-1-6-1.

Correspondence to: Arne Bergstrom, B&E Scientific Ltd, BN25 4PA, United Kingdom. Email: arne.bergstrom@physics.org

Abstract

Consider a universe in which an observer is surrounded by an infinite, roughly uniform distribution of luminous objects (stars or primeval stars), and assume further that each such object is opaque to those directly behind it. To the observer it would then seem as if he is surrounded by a distant, opaque wall emitting radiation. In addition, the requirement of Lorentz-covariant quantum transport has been shown to force the universe to be perceived to be in a state of apparent, exponentially accelerated expansion, producing redshifts in the spectra of the individual distant objects that together form the cosmic microwave background (CMB). The present article illustrates that under these two conditions, the observer would perceive the apparent distant luminous wall around him to radiate with an accurate blackbody spectrum, as observed. This suggests that the cosmic microwave background radiation might thus possibly be just an observational effect of this type (with traditional blackbody radiation as a limiting case), and hence may not necessarily have any connection to how the universe was created.

Keywords

References

[[[[[[
[[1]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145 (1975).
 
[[2]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[[3]  J. Frieman, M. Turner, and D. Huterer, “Dark Energy and the Accelerating Universe”, Ann. Rev. Astron. Astrophys. 46 385 (2008).
 
[[4]  D. L Fixsen, E. S. Gheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright, “The cosmic microwave background spectrum from the full COBE FIRAS data set”, Astrophys. J. 473, 576 (1996).
 
[[5]  P. S. Wesson, “Olbers's paradox and the spectral intensity of the extragalactic background light”, Astrophys. J. 367, 399 (1991).
 
Show More References
[6]  R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W Function”, Adv. Comput. Math. 5, 329 (1996).
 
[7]  W. Feller, An Introduction to Probability Theory and Its Applications, Vol 1 Ch 7 (Wiley, 1970).
 
[8]  H. Fischer, A History of the Central Limit Theorem (Springer, 2011).
 
[9]  S. Perlmutter et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae”, Astrophys. J. 517, 565 (1999).
 
[10]  A G Riess et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J. 116 1009 (1998).
 
[11]  G. D. Starkman and D. J. Schwarz, “Is the universe out of tune?”, Sci. Am. 293(2), 48 (2005).
 
Show Less References
comments powered by Disqus