International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2018, 6(6), 174-180
DOI: 10.12691/ijp-6-6-1
Open AccessArticle

Application of Complex Rotation Method for Calculate to Correlation Factor and the 2sns+1,3Se, 2snp+1,3P0, 2pnp+1,3De, 3d4d +1,3Ge Autoionizing States of He-like Atoms

B. Sow1, , A. Diouf1, Y. Gning1, B. Diop1, M. Sow1 and A. Wague1

1University Cheikh Anta Diop, Department of Physics, Atoms Laser Laboratory, Dakar, Senegal

Pub. Date: December 09, 2018

Cite this paper:
B. Sow, A. Diouf, Y. Gning, B. Diop, M. Sow and A. Wague. Application of Complex Rotation Method for Calculate to Correlation Factor and the 2sns+1,3Se, 2snp+1,3P0, 2pnp+1,3De, 3d4d +1,3Ge Autoionizing States of He-like Atoms. International Journal of Physics. 2018; 6(6):174-180. doi: 10.12691/ijp-6-6-1


Calculations of the energy levels of atoms and ions with Z ≤ 10 are carried out in this paper using the complex rotation method. Using a new wave function with two terms including a new method to calculate the correlation factor taking into account spherical harmonics through hypergeometric functions to calculate excited 2sns+1,3Se, 2snp+1,3P0, 2pnp+1,3De, 3d4d +1,3Ge states. The results obtained show quantitatively the great significance of electron correlation effects in the doubly excited states. These results are in compliance with some experimental and theoretical data.

wave function correlated two terms complex rotation method excited states correlation factor

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Y. K. Ho and S. Kar, Few-Body Syst. 53, 437. (2012).
[2]  L. G. Jiao and Y. K. Ho, Phys. Plasmas 20, 083303. (2013).
[3]  A. F. Ordonez-Lasso, J. C. Cardona, and J. L. Sanz-Vicario, Phys. Rev. A 88, 012702. (2013).
[4]  P. Jiang, S. Kar, and Y. Zhou, Phys. Plasmas 20, 012126. (2013).
[5]  Doolen G. D., A procedure for calculating resonance eigenvalues; J. Phys. B: Atom. Molec. Phys. 8, 525. (1975).
[6]  Lonnie W. Manning and Frank C. Sanders; Complex rotation method applied to Z-dependent perturbation theory: The 2s2p autoionizing states of two-electron atoms; Phys. Rev. A 44, 11. (1991).
[7]  Ho Y. K. and Callaway J.,Doubly excited of helium atoms between the N=2 and N=3 He+ thresholds.J. Phys. B,.18: p. 3481. (1985).
[8]  Ho Y. K. and Bathia A. K., Complex-coordinate calculation of 1,3D resonances in two electrons systems.Phys. Rev. A,. 44: p. 2895. (1991).
[9]  Ho Y. K., Strong electric-field effects on the doubly-excited intrashell states of He below the He+ (N=2) thresholds., Z. Phys. D, 38: p. 191-196. (1996).
[10]  Ho Y. K., Doubly-excited 1,3P0autoionization states of He between the N=4 and N=6 thresholds of He+ ions. Z. Phys. D, 42: p. 77-81. (1997).
[11]  Youssou Gning, et al. Calculations of resonances parameters for the ((2s21Se, (2s2p) 1,3P0) and ((3s21Se, (3s3p) 1,3P0) Doubly excited states of helium-like ions with z≤10 using a complex rotation method implemented in Scilab. Radiation Physics and Chemistry 106 ,1-6. (2015)
[12]  Ho Y.K. Phys. Rep. 99, 1 (1983).
[13]  A. Maquet, Shih-I. Chu, and W.P. Reinhardt, Phys. Rev. A 27, 2946. (1983).
[14]  W.P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223. (1982).
[15]  Ho Y.K. Phys. Rev. A 44, 4154. (1991).
[16]  I.A. Ivanov and Y.K. Ho, Phys. Rev. A 61, 032501. (2000).
[17]  Ho Y.K. and I.A. Ivanov, Phys. Rev. A 63, 062503. (2001).
[18]  Oza D H Phys. Rev. A 33 824. (1986).
[19]  Bhatia A K and Temkin A. Phys. Rev. A 36 1050. (1964).
[20]  Bhatia A K and Temkin A. Phys. Rev. A 29 1895. (1984).
[21]  Ho Y. K., Complex-coordinate calculations for doubly excited states of two-electron atoms .Phys. Rev. A,.23: p. 2137. (1981).
[22]  Dieng M , Biaye M., Gning Y., The Inter-Shell Doubly Excited 1,3Se, 1,3Po, 1,3De, 1,3Fo, and 1,3Ge States Energies Calculations of Helium-Like Ions Using Special Forms of Hylleraas-Type Wave Functions Chin. J. Phys. 51, 4. (2013).
[23]  Sakho, I, Konte, A., Ndao, A. S, Biaye, M. and Wague, A. Investigation of 2snp±1,3Po resonances oftwo-electron systems using the screeningconstant by unit nuclear charge method phys. Scr. 77. (2008).
[24]  Ivanov I. A. and SafronovaU.I .Opt. Spectrosc.75 506 (1993).
[25]  Sakho, I. Screening constant by unit nuclear charge calculations of 1,3Se, 1,3Po and 1,3De intershell Rydberg states of the helium-like ions below the N = 2 hydrogenic thresholds, Eur. Phys. J. D 61, 267-283 (2011).
[26]  Seminario J. M., Sanders F. C., Application of Z-dependent perturbation theory to autoionizing states of helium like atoms: Feshbach projection method; Phys Rev A 42, 2562. (1990).
[27]  Drake G. W. F. and Dalgarno A., A 1/Z expansion study of the 2s2p 1P and 3P autoionizing resonances of the helium isoelectric sequence; Proc. Roy. Soc. Lond. Scr A 320 549 (1971).
[28]  Sakho, I. Screening constant by unit nuclear charge calculations for (ns2) 1Se, (np2) 1De and (Nsnp) 1P0 excited states of He-like systems., Eur. Phys. J. D 47, 37-44, (2008).
[29]  Ivanov I. A. and Ho Y. K., Hylleraas Basis Calculation of the Doubly Excited 1,3Ge States in Helium like Ions, Chin. J. Phys. 39, 415. (2001).
[30]  Bachau, H., Martin, F., Riere, A., Yanez, M. At. Data Nucl. Data Tables 48, 167. (1991).
[31]  Manning, L.W., Sanders, F.C. Phys. Rev. A 44, 11. (1991).
[32]  Varshalovich, D.A., et al., Quantum Theory of Angular Momentum. Scientific Publishing Co. Ltd. (1988).
[33]  Samarskogo, A. A Base de la Théorie des Fonctions Spéciales. Edition Science, Moscow, 281 p. (1974).