International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2013, 1(6), 151-161
DOI: 10.12691/ijp-1-6-4
Open AccessArticle

Unified Field Theory and the Configuration of Particles

Zhiliang Cao1, 2, and Henry Gu Cao3

1Shanghai Jiaotong University

2Wayne State University

3Deerfield High School, Deerfield

Pub. Date: November 27, 2013

Cite this paper:
Zhiliang Cao and Henry Gu Cao. Unified Field Theory and the Configuration of Particles. International Journal of Physics. 2013; 1(6):151-161. doi: 10.12691/ijp-1-6-4

Abstract

The Standard Model of particle physics is a theory concerning electromagnetic, weak, and strong nuclear interactions, which mediate the dynamics of known subatomic particles. The current formulation was finalized based on the existence of quarks. Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything". Mathematically, the standard model is a quantized Yang-Mills theory. Therefore, the Standard Model falls short of being a complete theory of fundamental fields. It neither explains force hierarchy nor predicts the structure of the universe. Fortunately, Unified Field Theory (UFT) explains fundamental forces and structures of sub-atomic particles and grand universe. One of the important applications of the Unified Field Theory is that the mass of each sub-atomic particle has a formula. These formulas are structural formulas which can calculate mass of the particles. The mass of a particle decides its structure and characteristics.

Keywords:
particle physics Unified Field Theory quantum chromodynamics Standard Model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 12

References:

[1]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[2]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[3]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
 
[4]  R. Oerter (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics (Kindle ed.). Penguin Group. p. 2.
 
[5]  Sean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 59, Accessed Oct. 7, 2013, “...Standard Model of Particle Physics: The modern theory of elementary particles and their interactions ... It does not, strictly speaking, include gravity, although it's often convenient to include gravitons among the known particles of nature...”
 
[6]  In fact, there are mathematical issues regarding quantum field theories still under debate (see e.g. Landau pole), but the predictions extracted from the Standard Model by current methods are all self-consistent. For a further discussion see e.g. Chapter 25 of R. Mann (2010). An Introduction to Particle Physics and the Standard Model. CRC Press.
 
[7]  S.L. Glashow (1961). “Partial-symmetries of weak interactions”. Nuclear Physics 22 (4): 579-588.
 
[8]  S. Weinberg (1967). “A Model of Leptons”. Physical Review Letters 19 (21): 1264-1266.
 
[9]  A. Salam (1968). , ed. “Elementary Particle Physics: Relativistic Groups and Analyticity”. Eighth Nobel Symposium. : Almquvist and Wiksell. p. 367.
 
[10]  F. Englert, R. Brout (1964). “Broken Symmetry and the Mass of Gauge Vector Mesons”. Physical Review Letters 13 (9): 321-323.
 
[11]  P.W. Higgs (1964). “Broken Symmetries and the Masses of Gauge Bosons”. Physical Review Letters 13 (16): 508-509.
 
[12]  G.S. Guralnik, C.R. Hagen, T.W.B. Kibble (1964). “Global Conservation Laws and Massless Particles”. Physical Review Letters 13 (20): 585-587.
 
[13]  F.J. Hasertet al. (1973). “Search for elastic muon-neutrino electron scattering”. Physics Letters B 46 (1): 121.
 
[14]  F.J. Hasert et al. (1973). “Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment”. Physics Letters B 46 (1): 138.
 
[15]  F.J. Hasert et al. (1974). “Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment”. Nuclear Physics B 73 (1): 1.
 
[16]  D. Haidt (4 October 2004). “The discovery of the weak neutral currents”. CERN Courier. Retrieved 8 May 2008.
 
[17]  “Details can be worked out if the situation is simple enough for us to make an approximation, which is almost never, but often we can understand more or less what is happening.” from The Feynman Lectures on Physics, Vol 1. pp. 2-7.
 
[18]  S. Braibant, G. Giacomelli, M. Spurio (2009). Particles and Fundamental Interactions: An Introduction to Particle Physics. Springer. pp. 313-314.
 
[19]  G.S. Guralnik (2009). “The History of the Guralnik, and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles”. International Journal of Modern Physics A 24 (14): 2601-2627.
 
[20]  B.W. Lee, C. Quigg, H.B. Thacker (1977). “Weak interactions at very high energies: The role of the Higgs-boson mass”. Physical Review D 16 (5): 1519-1531.
 
[21]  “Huge $10 billion collider resumes hunt for 'God particle'“. CNN. 11 November 2009. Retrieved 2010-05-04.
 
[22]  M. Strassler (10 July 2012). “Higgs Discovery: Is it a Higgs?”. Retrieved 2013-08-06.
 
[23]  “CERN experiments observe particle consistent with long-sought Higgs boson”. CERN. 4 July 2012. Retrieved 2012-07-04.
 
[24]  “Observation of a New Particle with a Mass of 125 GeV”. CERN. 4 July 2012. Retrieved 2012-07-05.
 
[25]  “ATLAS Experiment”. ATLAS. 1 January 2006. Retrieved 2012-07-05.
 
[26]  “Confirmed: CERN discovers new particle likely to be the Higgs boson”. YouTube. Today. 4 July 2012. Retrieved 2013-08-06.
 
[27]  D. Overbye (4 July 2012). “A New Particle Could Be Physics' Holy Grail”. New York Times. Retrieved 2012-07-04.
 
[28]  “New results indicate that new particle is a Higgs boson”. CERN. 14 March 2013. Retrieved 2013-08-06.
 
[29]  “BABAR Data in Tension with the Standard Model”. SLAC. 31 May 2012. Retrieved 2013-08-06.
 
[30]  BaBar Collaboration (2012). “Evidence for an excess of B ? D(*) t- ?t decays”. Physical Review Letters 109 (10): 101802.
 
[31]  “BaBar data hint at cracks in the Standard Model”. e! Science News. 18 June 2012. Retrieved 2013-08-06.
 
[32]  J. Bagdonaitel et al. (2012). “A Stringent Limit on a Drifting Proton-to-Electron Mass Ratio from Alcohol in the Early Universe”. Science 339 (6115): 46.
 
[33]  C. Moskowitz (13 December 2012). “Phew! Universe's Constant Has Stayed Constant”. Space.com. Retrieved 2012-12-14.
 
[34]  “Particle chameleon caught in the act of changing”. CERN. 31 May 2010. Retrieved 2012-07-05.
 
[35]  S. Weinberg (1979). “Baryon and Lepton Nonconserving Processes”. Physical Review Letters 43 (21): 1566.
 
[36]  P. Minkowski (1977). “µ ? e ? at a Rate of One Out of 109 Muon Decays?”. Physics Letters B 67 (4): 421.
 
[37]  R. N. Mohapatra, G. Senjanovic (1980). “Neutrino Mass and Spontaneous Parity Nonconservation”. Physical Review Letters 44 (14): 912-915.
 
[38]  M. Gell-Mann, P. Ramond and R. Slansky (1979). F. van Nieuwenhuizen and D. Z. Freedman, ed. Supergravity. . pp. 315-321.
 
[39]  http://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-hierarchy-problem/.
 
[40]  R. Barbieri, G. F. Giudice (1988). “Upper Bounds on Supersymmetric Particle Masses”. Nucl. Phys. B 306: 63.
 
[41]  Stephen P. Martin, A Supersymmetry Primer
 
[42]  K. Meissner, H. Nicolai (2006). “Conformal Symmetry and the Standard Model”. Physics Letters B648: 312-317.
 
[43]  Zee, A. (2003). Quantum field theory in a nutshell. Press.
 
[44]  N. Arkani-Hamed, , G. Dvali (1998). “The Hierarchy problem and new dimensions at a millimeter”. Physics Letters B429: 263-272.
 
[45]  N. Arkani-Hamed, , G. Dvali (1999). “Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity”. Physical Review D59: 086004.
 
[46]  For a pedagogical introduction, see M. Shifman (2009). “Large Extra Dimensions: Becoming acquainted with an alternative paradigm”. Crossing the boundaries: Gauge dynamics at strong coupling. : World Scientific.
 
[47]  M. Gogberashvili, Hierarchy problem in the shell universe model,
 
[48]  M. Gogberashvili, Our world as an expanding shell,
 
[49]  M. Gogberashvili, Four dimensionality in noncompact Kaluza-Klein model.
 
[50]  CMS Collaoration, “Search for Microscopic Black Hole Signatures at the Large Hadron Collider,” http://arxiv.org/abs/1012.3375.
 
[51]  P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), “The 2010 CODATA Recommended Values of the Fundamental Physical Constants” (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants [Thursday, 02-Jun-2011 21:00:12 EDT]. National Institute of Standards and Technology, .
 
[52]  W.N. Cottingham, D.A. Greenwood (1986). An Introduction to Nuclear Physics. Press. p. 19.
 
[53]  R.K. Adair (1989). The Great Design: Particles, Fields, and Creation. Press. p. 214.
 
[54]  J.-L. Basdevant, J. Rich, M. Spiro (2005). Fundamentals in Nuclear Physics. Springer. p. 155.
 
[55]  H. Nishino et al. (Kamiokande collaboration) (2009). “Search for Proton Decay via p ? e+ p0 and p ? µ+ p0 in a Large Water Cherenkov Detector”. Physical Review Letters 102 (14): 141801.
 
[56]  S.N. Ahmed et al. (SNO Collaboration) (2004). “Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory”. Physical Review Letters 92 (10): 102004.
 
[57]  A. Watson (2004). The Quantum Quark. Press. pp. 285-286.
 
[58]  W. Weise, A.M. Green (1984). Quarks and Nuclei. World Scientific. pp. 65-66.
 
[59]  S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert (21 November 2008). “Ab Initio Determination of Light Hadron Masses”. Science 322 (5905): 1224-7.
 
[60]  C. F. Perdrisat, V. Punjabi, M. Vanderhaeghen (2007). “Nucleon Electromagnetic Form Factors”. Prog Part Nucl Phys 59 (2): 694-764.
 
[61]  Sigfrido Boffi & Barbara Pasquini (2007). “Generalized parton distributions and the structure of the nucleon”. Rivista del Nuovo Cimento 30.
 
[62]  Randolf Pohl, Aldo Antognini, François Nez, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Luis M. P. Fernandes, Adolf Giesen, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, et al. (8 July 2010). “The size of the proton”. Nature 466 (7303): 213-216.
 
[63]  Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F. D.; Biraben, F.; Cardoso, J. M. R.; Covita, D. S.; Dax, A.; Dhawan, S.; Diepold, M.; Fernandes, L. M. P.; Giesen, A.; Gouvea, A. L.; Graf, T.; Hänsch, T. W.; Indelicato, P.; Julien, L.; Kao, C. -Y.; Knowles, P.; Kottmann, F.; Le Bigot, E. -O.; Liu, Y. -W.; Lopes, J. A. M.; Ludhova, L.; Monteiro, C. M. B.; Mulhauser, F.; Nebel, T.; Rabinowitz, P.; Dos Santos, J. M. F.; Schaller, L. A. (2013). “Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen”. Science 339 (6118): 417-420.
 
[64]  New proton measurements may throw physics a curve
 
[65]  “The Proton Just Got Smaller”. Photonics.Com. 12 July 2010. Retrieved 2010-07-19.
 
[66]  Researchers Observes Unexpectedly Small Proton Radius in a Precision Experiment
 
[67]  Headrick, J.M.; Diken, E.G.; Walters, R. S.; Hammer, N. I.; Christie, R.A. ; Cui, J.; Myshakin, E.M.; Duncan, M.A.; Johnson, M.A.; Jordan, K.D. (2005). “Spectral Signatures of Hydrated Proton Vibrations in Water Clusters”. Science 308 (5729): 1765-69.
 
[68]  R.H. Petrucci, W.S. Harwood, and F.G. Herring (2002). General Chemistry (8th ed.). p. 41.
 
[69]  Romer A (1997). “Proton or prouton? and the depths of the atom”. Amer. J. Phys. 65 (8): 707.
 
[70]  reported acceptance by the British Association in a footnote to a 1921 paper by O. Masson in the Philosophical Magazine (O. Masson, Phil. Mag. 41, 281, 1921).
 
[71]  Pais, Inward Bound, first edition, Oxford Press, 1986, page 296. Pais reported that he believed the first science literature use of the word proton occurs in the article Nature, 106: 357, 1920.
 
[72]  “Apollo 11 Mission”. Lunar and Planetary Institute. 2009. Retrieved 2009-06-12.
 
[73]  “Space Travel and Cancer Linked? Stony Brook Researcher Secures NASA Grant to Study Effects of Space Radiation”. Brookhaven National Laboratory. 12 December 2007. Retrieved 2009-06-12.
 
[74]  B. Shukitt-Hale, A. Szprengiel, J. Pluhar, B.M. Rabin, and J.A. Joseph. “The effects of proton exposure on neurochemistry and behavior”. Elsevier/COSPAR. Retrieved 2009-06-12.
 
[75]  N.W. Green and A.R. Frederickson. “A Study of Spacecraft Charging due to Exposure to Interplanetary Protons”. Jet Propulsion Laboratory. Retrieved 2009-06-12.
 
[76]  H. Planel (2004). Space and life: an introduction to space biology and medicine. CRC Press. pp. 135-138.
 
[77]  G. Gabrielse (2006). “Antiproton mass measurements”. International Journal of Mass Spectrometry 251 (2-3): 273-280.
 
[78]  1935 Nobel Prize in Physics. Nobelprize.org. Retrieved on 2012-08-16.
 
[79]  Sir James Chadwick’s Discovery of Neutrons. ANS Nuclear Cafe. Retrieved on 2012-08-16.
 
[80]  Nakamura, K (2010). “Review of Particle Physics”. Journal of Physics G: Nuclear and Particle Physics 37 (7A): 075021.
 
[81]  Nudat 2. Nndc.bnl.gov. Retrieved on 2010-12-04.
 
[82]  E. Rutherford (1920). “Nuclear Constitution of Atoms”. Proceedings of the Royal Society A 97: 374.
 
[83]  Rutherford, E. (1920). “Bakerian Lecture. Nuclear Constitution of Atoms”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 97 (686): 374.
 
[84]  Brown, Laurie M. (1978). “The idea of the neutrino”. Physics Today 31 (9): 23.
 
[85]  Friedlander G., Kennedy J.W. and Miller J.M. (1964) Nuclear and Radiochemistry (2nd edition), Wiley, pp. 22-23 and 38-39.
 
[86]  “V. A. Ambartsumian-a life in science”. Astrophysics 51 (3): 280. 2008.
 
[87]  Bothe, W.; Becker, H. (1930). “Künstliche Erregung von Kern-?-Strahlen” [Artificial excitation of nuclear ?-radiation]. Zeitschrift für Physik 66 (5-6): 289.
 
[88]  Becker, H.; Bothe, W. (1932). “Die in Bor und Beryllium erregten ?-Strahlen” [G-rays excited in boron and beryllium]. Zeitschrift für Physik 76 (7-8): 421.
 
[89]  Joliot-Curie, Irène and Joliot, Frédéric (1932). “Émission de protons de grande vitesse par les substances hydrogénées sous l'influence des rayons ? très pénétrants” [Emission of high-speed protons by hydrogenated substances under the influence of very penetrating ?-rays]. Comptes Rendus 194: 273.
 
[90]  Chadwick, J. (1933). “Bakerian Lecture. The Neutron”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 142 (846): 1.
 
[91]  Chadwick, James (1932). “Possible Existence of a Neutron”. Nature 129 (3252): 312.
 
[92]  “Das Jahr 1932 Die Entdeckung des Neutrons”. Wolfgang Pauli. Sources in the History of Mathematics and Physical Sciences 6. 1985. p. 105.
 
[93]  Atkins, P.W. and J. de Paula, P.W. (2006) “Atkins' Physical Chemistry” (8th edition), W.H. Freeman, p. 451.
 
[94]  Herzberg, G. (1950) Spectra of Diatomic Molecules (2nd edition), van Nostrand Reinhold, pp. 133-140.
 
[95]  Particle Data Group Summary Data Table on Baryons. lbl.gov (2007). Retrieved on 2012-08-16.
 
[96]  Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach, Third Edition K. Heyde Taylor & Francis 2004.
 
[97]  “Pear-shaped particles probe big-bang mystery” (Press release). . 20 February 2006. Retrieved 2009-12-14.
 
[98]  A cryogenic experiment to search for the EDM of the neutron. Hepwww.rl.ac.uk. Retrieved on 2012-08-16.
 
[99]  Search for the neutron electric dipole moment: nEDM. Nedm.web.psi.ch (2001-09-12). Retrieved on 2012-08-16.
 
[100]  SNS Neutron EDM Experiment. P25ext.lanl.gov. Retrieved on 2012-08-16.
 
[101]  Measurement of the Neutron Electric Dipole Moment. Nrd.pnpi.spb.ru. Retrieved on 2012-08-16.
 
[102]  Miller, G.A. (2007). “Charge Densities of the Neutron and Proton”. Physical Review Letters 99 (11): 112001.
 
[103]  Spyrou, A.; et al. (2012). “First Observation of Ground State Dineutron Decay: 16Be”. Physical Review Letters 108: 102501.
 
[104]  Felipe J. Llanes-Estrada, Gaspar Navarro., Felipe J.; Gaspar Navarro (2011). “Cubic neutrons”.
 
[105]  Byrne, J. Neutrons, Nuclei, and Matter, Publications, , 2011, ISBN 0486482383, pp. 32-33.
 
[106]  Clowdsley, MS; Wilson, JW; Kim, MH; Singleterry, RC; Tripathi, RK; Heinbockel, JH; Badavi, FF; Shinn, JL (2001). “Neutron Environments on the Martian Surface”. Physica Medica 17 (Suppl 1): 94-6.
 
[107]  Science/Nature | Q&A: Nuclear fusion reactor. BBC News (2006-02-06). Retrieved on 2010-12-04.
 
[108]  Byrne, J. Neutrons, Nuclei, and Matter, Publications, , 2011.
 
[109]  Kumakhov, M. A.; Sharov, V. A. (1992). “A neutron lens”. Nature 357 (6377): 390-391.
 
[110]  Physorg.com, “New Way of 'Seeing': A 'Neutron Microscope'”. Physorg.com (2004-07-30). Retrieved on 2012-08-16.
 
[111]  “NASA Develops a Nugget to Search for Life in Space”. NASA.gov (2007-11-30). Retrieved on 2012-08-16.
 
[112]  “Facing up to secondary neutrons”. Medical Physics Web. May 23, 2008. Retrieved 2011-02-08.
 
[113]  Heilbronn, L.; Nakamura, T; Iwata, Y; Kurosawa, T; Iwase, H; Townsend, LW (2005). “Expand+Overview of secondary neutron production relevant to shielding in space”. Radiation Protection Dosimetry 116 (1-4): 140-143.
 
[114]  Rujula, Georgi, Glashow (1975) “Hadron Masses in Gauge Theory.” Physical Review D12, p.147.
 
[115]  H. Georgi. (1990) “Vector Realization of Chiral Symmetry.” inSPIRE Record.
 
[116]  C. Amsler et al. (2008): Quark Model.
 
[117]  J. Beringer et al. (Particle Data Group) (2012). “PDGLive Particle Summary 'Leptons (e, mu, tau, ... neutrinos ...)'”. Particle Data Group. Retrieved 2013-01-12.
 
[118]  New Evidence for the Existence of a Particle Intermediate Between the Proton and Electron, Phys. Rev. 52, 1003 (1937).
 
[119]  Yukaya Hideka, On the Interaction of Elementary Particles 1, Proceedings of the Physico-Mathematical Society of (3) 17, 48, pp 139-148 (1935). (Read 17 November 1934).
 
[120]  S. Carroll (2004). Spacetime and Geometry: An Introduction to General Relativity. Wesly. p. 204.
 
[121]  Mark Wolverton (September 2007). “Muons for Peace: New Way to Spot Hidden Nukes Gets Ready to Debut”. Scientific American 297 (3): 26-28.
 
[122]  “Physicists Announce Latest Muon g-2 Measurement” (Press release). Brookhaven National Laboratory. 30 July 2002. Retrieved 2009-11-14.
 
[123]  J. Adam et al. (MEG Collaboration) (2013). “New Constraint on the Existence of the mu+ -> e+ gamma Decay”. Physical Review Letters 110 (20): 201801.
 
[124]  Fleming, D. G.; Arseneau, D. J.; Sukhorukov, O.; Brewer, J. H.; Mielke, S. L.; Schatz, G. C.; Garrett, B. C.; Peterson, K. A. et al. (28 Jan 2011). “Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2”. Science 331 (6016): 448-450.
 
[125]  TRIUMF Muonic Hydrogen collaboration. “A brief description of Muonic Hydrogen research”. Retrieved 2010-11-7.
 
[126]  Pohl, Randolf et al. “The Size of the Proton” Nature 466, 213-216 (8 July 2010).
 
[127]  “The Muon g-2 Experiment Home Page”. G-2.bnl.gov. 2004-01-08. Retrieved 2012-01-06.
 
[128]  “(from the July 2007 review by Particle Data Group)” (PDF). Retrieved 2012-01-06.
 
[129]  Hagiwara, K; Martin, A; Nomura, D; Teubner, T (2007). “Improved predictions for g-2g-2 of the muon and aQED(MZ2)”. Physics Letters B 649 (2-3): 173.
 
[130]  L. B. Okun (1980). Leptons and Quarks. V.I. Kisin (trans.). North-Holland Publishing. p. 103.
 
[131]  Perl, M. L.; Abrams, G.; Boyarski, A.; Breidenbach, M.; Briggs, D.; Bulos, F.; Chinowsky, W.; Dakin, J. et al. (1975). “Evidence for Anomalous Lepton Production in e+e- Annihilation”. Physical Review Letters 35 (22): 1489.
 
[132]  J. Beringer et al. (Particle Data Group) (2012). Leptons. “Review of Particle Physics”. Journal of Physics G 86 (1): 581-651.
 
[133]  D. Fargion, P.G. De Sanctis Lucentini, M. De Santis, M. Grossi (2004). “Tau Air Showers from Earth”. The Astrophysical Journal 613 (2): 1285.
 
[134]  M.L. Perl (1977). “Evidence for, and properties of, the new charged heavy lepton”. In T. Thanh Van (ed.). Proceedings of the XII Rencontre de Moriond. SLAC-PUB-1923.
 
[135]  Riazuddin (2009). “Non-standard interactions”. NCP 5th Particle Physics Sypnoisis (,: Riazuddin, Head of High-Energy Theory Group at for Physics) 1 (1): 1-25.
 
[136]  Brodsky, Stanley J.; Lebed, Richard F. (2009). “Production of the Smallest QED Atom: True Muonium (µ+µ-)”. Physical Review Letters 102 (21): 213401.
 
[137]  S. Fukuda et al., hep-ex/0103032, Phys. Rev. Lett. 86,5651 (2001); hep-ex/0103033, Phys. Rev. Lett. 86, 5656(2001).
 
[138]  Q. R. Ahmad et al.,, nucl-ph/0106015, Phys. Rev. Lett.87, 071301 (2001).
 
[139]  B. T. Cleveland, T. J. Daily, R. Davis, Jr., J. R. Distel,K. Lande, C. K. Lee, and P. S. Wildenhain, Astrophys.J. 496, 505 (1998).
 
[140]  J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, V. V. Gorbachev,T. V. Ibragimova, A. V. Kalikhov, N. G. Khairnasov,T. V. Knodel, I. N. Mirmov, A. A. Shikhin, E. P.Veretenkin, V. M. Vermul, V. E. Yants, G. T. Zatsepin,T.J. Bowles, W. A. Teasdale, D. L. Wark, M. L. Cherry, J.S. Nico, B. T. Cleveland, R. Davis, Jr., K. Lande, and P.S. Wildenhain, S. R. Elliott and J. F. Wilkerson, astroph/9907113, Phys. Rev. C 60, 055801 (1999).
 
[141]  W. Hampel, J. Handt, G. Heusser, J. Kiko, T. Kirsten,M. Laubenstein, E. Pernicka, W. Rau, M. Wojcik, Y. Zakharov,R. v. Ammon, K. H. Ebert, T. Fritsch, E. Henrich,L. Stielglitz, F. Weirich, M. Balata, M. Sann, F. X.Hartmann, E. Bellotti, C. Cattadori, O. Cremonesi, N.Ferrari, E. Fiorini, L. Zanotti, M. Altmann, F. v. Feilitzsch,R. M¨oßbauer, S. W¨anninger, G. Berthomieu, E.Schatzmann, I. Carmi, I. Dostrovsky, C. Bacci, P. Belli,R. Bernabei, S. d’Angelo, L. Paoluzi, M. Cribier, J. Rich,M. Spiro, C. Tao, D. Vignaud, J. Boger, R. L.Hahn, J.K. Rowley, R. W. Stoenner, and J. Weneser, Phys. Lett.B 447, 127 (1999).
 
[142]  Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996).
 
[143]  See www.sns.ias.edu/jnb/Meetings/Lownu/index.htmland www-sk.icrr.u-tokyo.ac.jp/lownu/index.html.
 
[144]  V. A. Kuzmin, Zh. Eksp. Teor. Fiz. 49, 1532 (1965) (Sov.Phys. JETP 22, 1051 (1966)).
 
[145]  J. N. Bahcall, M. H. Pinsonneault, and , astroph/0010346, Astrophys. J. 555, 990 (2001).
 
[146]  A. S. Brun, S. Turck-Chi`eze, and P. Morel, astroph/9806272, Astrophys. J. 506, 913 (1998).
 
[147]  A. Piepke, Nucl. Phys. B (Proc. Suppl.) 91, 99 (2001).
 
[148]  G. Alimonti et al., (BOREXINO collaboration), hepex/0012030, Astroparticle Physics 16, 205 (2002).
 
[149]  M. Altmann, M. Balata, P. Belli, E. Bellotti, R. Bernabei,E. Burkert, C. Cattadori, G. Cerichelli, M Chiarini,M. Cribier, S. d’Angelo, G. Del Re, K. H. Ebert, F. v.Feilitzsch, N. Ferrari, W. Hampel, J. Handt, E. Henrich,G. Heusser, J. Kiko, T. Kirsten, T. Lachenmaier, J. Lanfranchi,M. Laubenstein, D. Motta, W. Rau, H. Richter,S. W¨anninger, M. Wojcik, L. Zanotti, hep-ex/0006034,Phys. Lett. 490, 16 (2000).
 
[150]  V. N. Gavrin, V. N. Kornoukhov, and G. T. Zatsepin,Institute for Nuclear Research of the of the Report No. P-0690, 1991.
 
[151]  V. N. Gavrin, V. E. Gurentsov, V. N. Kornoukhov, A.1 February 2008 SAGE JETP 12M. Pshukov, and A. A. Shikhin, Institute for NuclearResearch of the of of the ReportNo. P-0698, 1991.
 
[152]  J. N. Abdurashitov, V. N. Gavrin, A. V. Kalikhov, V.L. Matushko, A. A. Shikhin, V. E. Yants, and O. S.Zaborskaya, to be published in Proceedings of the XIthInt. School on Particles and Cosmology, ,April 2001.
 
[153]  J. N. Abdurashitov, E. L. Faizov, V. N. Gavrin, A. O. Gusev,A. V. Kalikhov, T. V. Knodel, I. I. Knyshenko, V. N.Kornoukhov, I. N. Mirmov, A. M. Psukhov, A. M. Shalagin,A. A. Shikhin, P. V. Timofeyev, E. P. Veretenkin, V.M. Vermul, G. T. Zatsepin, T. J. Bowles, S. R. Elliott, J.S. Nico, W. A. Teasdale, D. L. Wark, J. F. Wilkerson, B.T. Cleveland, T. Daily, R. Davis, K. Lande, C. K. Lee,P. S. Wildenhain, M. L. Cherry, and R. T. Kouzes, Phys.Lett. B 328, 234 (1994).
 
[154]  S. R. Elliott, Nucl. Instrum. Methods Phys. Res. A 290,158 (1990).
 
[155]  B. T. Cleveland, Nucl. Instrum. Methods Phys. Res. 214,451 (1983).
 
[156]  B. T. Cleveland, Nucl. Instrum. Methods Phys. Res. A416, 405 (1998).
 
[157]  V. N. Gavrin, Proceedings of the XIXth InternationalConf. on Neutrino Physics and Astrophysics, Sudbury,Canada, 16-21 June 2000, ed. by J. Law, R. W. Ollerhead,and J. J. Simpson, Nucl. Phys. B (Proc. Suppl.)91, 36 (2000).
 
[158]  V. N. Gavrin, V. N. Kornoukhov, and V. E. Yants, Institutefor Nuclear Research of the of the Report No. P-0703, 1991.
 
[159]  V. N. Gavrin, S. N. Danshin, A. V. Kopylov, and V.E. Cherekhovsky, Institute for Nuclear Research of theAcademy of Sciences of the USSR Report No. P-0494,1986.
 
[160]  V. N. Gavrin and Yu. I. Zacharov, Institute for NuclearResearch of the of of the ReportNo. P-0560, 1987.
 
[161]  M. Cribier, B. Pichard, J. Rich, J. P. Soirat, M. Spiro,Th. Stolarczyk, C. Tao, D. Vignaud, P. Anselmann, A.Lenzing, C. Schlosser, R. Wink, and J. K. Rowley, Astropart.Phys. 6, 129 (1997).
 
[162]  V. N. Gavrin, V. V. Gorbachev, T. V. Ibragimova, and B.T. Cleveland, Yad. Phys. 65, 1309 (2002); Phys. AtomicNuclei 65, 1276 (2002).
 
[163]  J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, V. V. Gorbachev,T. V. Ibragimova, A. V. Kalikhov, N. G. Khairnasov,T. V. Knodel, V. N. Kornoukhov, I. N.Mirmov, A.A. Shikhin, E. P. Veretenkin, V. M. Vermul, V. E. Yants,G. T. Zatsepin, T. J. Bowles, J. S. Nico, W. A. Teasdale,D. L. Wark, M. L. Cherry, V. N. Karaulov, V. L. Levitin,V. I. Maev, P. I. Nazarenko, V. S. Shkol’nik, N. V. Skorikov,B. T. Cleveland, T. Daily, R. Davis, Jr., K. Lande,C. K. Lee, P. S. Wildenhain, Yu. S. Khomyakov, A. V.Zvonarev, S. R. Elliott, and J. F. Wilkerson, Phys. Rev.Lett. 77, 4708 (1996).
 
[164]  J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, V. V.Gorbachev, T. V. Ibragimova, A. V. Kalikhov, N. G.Khairnasov, T. V. Knodel, V. N. Kornoukhov, I. N. Mirmov,A. A. Shikhin, E. P. Veretenkin, V. M. Vermul,V. E. Yants, G. T. Zatsepin, Yu. S. Khomyakov, A. V.Zvonarev, T. J. Bowles, J. S. Nico, W. A. Teasdale, D. L.Wark, M. L. Cherry, V. N. Karaulov, V. L. Levitin, V. I.Maev, P. I. Nazarenko, V. S. Shkol’nik, N. V. Skorikov,B. T. Cleveland, T. Daily, R. Davis, Jr., K. Lande, C. K.Lee, P. S. Wildenhain, S. R. Elliott, and J. F. Wilkerson,hep-ph/9803418, Phys. Rev. C. 59, 2246 (1999).
 
[165]  W. Hampel and L. Remsberg, Phys. Rev. C 31, 666(1985).
 
[166]  V. Berezinsky, G. Fiorentini, and M. Lissia, hepph/9904225, Astropart. Phys. 12, 299 (2000).
 
[167]  G. L. Fogli, , D. Montanino, and A. Palazzo, hepph/9910387, Phys. Rev. D 61, 073009 (2000).
 
[168]  J. Pulido and E. Kh. Akhmedov, hep-ph/9907399, Astropart.Phys. 13, 227 (2000).
 
[169]  P. A. Sturrock and J. D. Scargle, astro-ph/0011228, Astrophys.J. 550, L101-L104 (2001).
 
[170]  J. N. Bahcall, hep-ph/0108148, Phys. Rev. C 65 025801(2002).
 
[171]  J. N. Bahcall, hep-ph/9710491, Phys. Rev. C 56, 3391(1997).
 
[172]  J. N. Bahcall et al., nucl-th/9601044, Phys. Rev. C 54,411 (1996).
 
[173]  J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Pe˜na-Garay, hep-ph/0111150, JHEP 0204, 007 (2002).
 
[174]  After the appearance of our preprint we learned that similararguments to ours have been used to make predictionsfor what will be measured by BOREXINO. See S.M. Bilenky, T. Lachenmaier, , and F. v. Feilitzsch,hep-ph/0109200, Phys. Lett. 533, 191 (2002).
 
[175]  J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Pe˜na-Garay, hep-ph/0106258, JHEP 0108, 014 (2001).
 
[176]  P. I. Krastev and A. Yu. Smirnov, hep-ph/0108177, Phys.Rev. D 65, 073022 (2002).
 
[177]  M.C. Gonzalez-Garcia, M. Maltoni, and C. Pe˜na-Garay,hep-ph/0108073.