International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2018, 6(2), 38-46
DOI: 10.12691/ijp-6-2-3
Open AccessArticle

A Modified Model of the Universe Shows How Acceleration Changes Galaxy Dynamics

Jarl-Thure Eriksson1,

1Åbo Akademi University, Finland

Pub. Date: April 11, 2018

Cite this paper:
Jarl-Thure Eriksson. A Modified Model of the Universe Shows How Acceleration Changes Galaxy Dynamics. International Journal of Physics. 2018; 6(2):38-46. doi: 10.12691/ijp-6-2-3

Abstract

Based on the hypothesis that the combined matter and radiation energy of the universe is balanced by an equivalent amount of negative gravitational energy, a novel formulation of the Friedmann equation is examined. The hypothesis opens new avenues for studying the evolution of the universe. The expansion, initiated by the event of a vacuum fluctuation, is driven by the continuous occurrence of new positron-electron pairs. The current acceleration of expansion, gexp = 1,066·10-11 m/s2, emerges as a result of the study. It is mathematically shown that gexp causes a cosmic Coriolis effect responsible for the rotary velocity deviations in the galaxies. The effect eliminates the need for dark matter. The MOND theory is explained on a purely physical basis.

Keywords:
Friedmann equation accelerating expansion of the universe Coriolis force rotational velocities of galaxies

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 11

References:

[1]  Perlmutter, S. Supernovae, Dark Energy, and the Accelerating Universe, Physics Today, April 2003.
 
[2]  Guth, A. The Inflationary Universe: The quest for a new theory of cosmic origins, Perseus Books, 1997.
 
[3]  Tryon, E. P. Is the universe a vacuum fluctuation?. Nature 247, pp. 396-397, 1973.
 
[4]  Dongshan, H., Dongfeng, G., Qing-yu, C., Spontaneous creation of the universe from nothing. arXiv:1404.1207v1, 2014.
 
[5]  McGaugh, S. S., Lelli, F., The radial acceleration relation in rotationally supported galaxies, arXiv:1609.05917v, 2016.
 
[6]  Lelli, F., McGaugh, S. S., Schombert, J. M., Pawlowski, M. S., One law to rule them all: The radial acceleration relation of galaxies, arXiv:1610.08981v1, 2016.
 
[7]  Eadie, M. G., Springford, A., Harris, W. E., Bayesian mass estimates of the Milky Way, arXiv:1609.06304v3, 2016.
 
[8]  Dirac, P. A. M., The cosmological constants, Nature 139, 323, 1937.
 
[9]  Weyl, H., Eine neue Erweiterung der Relativitätstheorie, Ann. Phys. 364, 101, 1919.
 
[10]  Eddington, A., Preliminary note on the masses of the electron, the proton and the universe, Proc. Cam. Phil. Soc., 27, 1931.
 
[11]  Unzicker, A., The relativity of inertia and reality of nothing, arXiv:0708.3518v5, 2011.
 
[12]  Ray, S., Mukhopadhyay, U., Ghosh, P. P., Large number hypothesis: A review, arXiv: 0705.1836v1, 2007.
 
[13]  Dirac, P. A. M., Cosmological models and the large numbers hypothesis, Proc. R. Soc. London A 338, pp. 439-446, 1974.
 
[14]  Bielewicz, P., Banday, A. J., Gorski, K. M., Constraints on the topology of the universe derived from the 7-year WMAP CMB data and prospects of constraining the topology using CMB polarization maps, arXiv:1303.4004v1.
 
[15]  Krauss, L., Universe from nothing, Simon & Schuster, NY, 2012.
 
[16]  Mach, E., History and root of the principle of the conservation of energy, The Science of Mechanics 6th ed. 1904.
 
[17]  Sciama, D. W., On the origin of inertia, Monthly Notices of the Royal Astronomical Society 113, 34-42, 1952.
 
[18]  Halpern, P., Tomasello, N., Size of the observable universe, Advances in Astrophysics Vol. 1. No. 3, 135-137, 2016.
 
[19]  Einstein, A., Die Grundlage der allgemeine Relativitätstheorie. Annalen der Physik, 49, 769-822, 1916.
 
[20]  Friedmann, A., Über die Krümmung des Raumes. Zeitschrift für Physik, Vol. 10, 377-386, 1922.
 
[21]  Ohio State University, Astronomy 5682: Introduction to Cosmology, Spring 2009.
 
[22]  Einstein, A., Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Preussischen Akad. d. Wissenschaften, 1917.
 
[23]  Milgrom, M., MOND theory, arXiv:1404.7661v2, 2014.
 
[24]  Benvenuto, O. G., Garcia-Berro, E., Isern, J., An upper limit to the secular variation of the gravitational constant from white dwarf stars, Phys.Rev. 69, 2004.
 
[25]  Biesiada, M., Malec, B., A new white dwarf constraint on the rate of change of the gravitational constant, Monthly Notices of the Royal Astronomical Society, 350, 644-648, 2004.
 
[26]  Antognini, A. et al., Proton structure from the measurement of 2s-2p transition frequencies of muonic hydrogen, Science Vol. 339, 417-20, 2013.
 
[27]  NASA, Aeronautics and Space Administration, Universe 101, 2014.
 
[28]  Davies, T., Lineweaver, C. H ., Expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe, arXiv: astro-ph/0310808v2, 2003.
 
[29]  Crighton, N., Make a plot with both redshift and universe age axes using astropy. cosmology. Ipython.display. Cosmological Calculations, 2015.
 
[30]  Bonamente, M., Joy, M. K., LaRoque, S. J., Carlstrom, J. E., Reese, E. D., Dawson, K. S., Determination of the cosmic distance scale from Sunyaev-Zeel'dovich effect and Chandra x-ray measurements of high redshift galaxy clusters, arXiv:astro-ph/0512349v2, 2006.
 
[31]  Rubin, V. C., Thonnard, N., Ford, W. K., Extended rotation curves of high-luminosity spiral galaxies, Astrophysical Journal Letters 225, L107, 1978.
 
[32]  Feng, J. Q., Gallo, C. F., Galactic rotation described with bulge+disk gravitational models, arXiv:1007.3778v3, 2011.
 
[33]  Lass, H., Blitzer, L., The gravitational potential due to uniform disks and rings. Celestial Mechanics 30, 225-228, 1982.
 
[34]  Reid, M. J., Menten, K. M., Brunthaler, A., Zeng, X. W., Dame, T. M., Xu, Y., Wu, Y., Zhang, B., Sanna, A., Sato, M., Hachisuka, K., Choi, Y. K., Immer, K., Moscadelli, L., Rygl, K. L. J., Bartkiewicz, A., Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way, arXiv:1401.5377v3, 2014.
 
[35]  LAMOST Survey, The Milky Way’s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution, Press release November 18, 2016.