International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2018, 6(1), 1-8
DOI: 10.12691/ijp-6-1-1
Open AccessArticle

A Constant Rotating Kerr-Newman Black Hole with No Electrical Net Charge

T. G.M. Gerlitz1, and W. Walden1

1Department of Computer Sciences, Technological University of Panama, Panama, Republic of Panama

Pub. Date: January 13, 2018

Cite this paper:
T. G.M. Gerlitz and W. Walden. A Constant Rotating Kerr-Newman Black Hole with No Electrical Net Charge. International Journal of Physics. 2018; 6(1):1-8. doi: 10.12691/ijp-6-1-1


A black hole solution for the rotating electric charge is given in the Kerr-Newman metric. Incorporation of the oscillating effects show to drive rotation. The model derived enopens consideration of an electrical charged BH with no net charge, which would neutralize. From the solutions a new complete set of tensor elements to modify the Kerr-Newman metric leading to the interesting feature the squared line element can represent a black hole permanently carrying electrical charge, but the charge not evenly distributing and spreading on the surface. Due to its properties, the black hole approached in this theory shows a serrated surface in a kind sawtooth behaviour boosting the idea for determination of torsion effects and detect rotation. An exact representation of the data together with an entire set of information can found to support further evaluation of similar objects. The stability of the structure is discussed.

black hole Kerr-Newman metric RN metric

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Reissner, H. Ueber die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann. Phys, 50 (1916). 106-120.
[2]  Nordstrøm, G. On the Energy of the Gravitational Field in Einstein’s Theory. Verhandl. Koninkl. Ned. Wetenschap., Afdel. Natuurk., Amsterdam 26 (1918) 1201-1208.
[3]  Kerr, R. P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11 (1963) 237-238.
[4]  Kerr, R. Gravitational collapse and rotation. Quasistellar sources and gravitational collapse: Including the proceedings of the First Texas Symposium on Relativistic Astrophysics (I. Robinson, A. Schild, E. L. Schuecking, eds.). University of Chicago Press, Chicago (1965) pp. 99-102.
[5]  Newman, E; Janis, A. Note on the Kerr Spinning-Particle Metric. J. Math. Phys. 6 (1965) 915-917.
[6]  Newman, E.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a Rotating Charged Mass. J. Math. Phys. 6 (1965) 918-926.
[7]  Boyer, R. H., Lindquist, R. W. Maximal Analytic Extension of the Kerr metric. J. Math. Phys. 8 (1967) 265.
[8]  Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 7 (1936). 347-353.
[9]  Dirac, P. A. M. The Quantum Theory of the Electron. Proc. Roy. Soc. A 117 (1928a) 610-624.
[10]  Dirac, P. A. M. The Quantum Theory of the Electron. Part II. Proc. Roy. Soc. London A 118 (1928b) 351-3611.
[11]  Gerlitz, T. G. M.; Walden, W. An Idea to a World inside a Black Hole. Int. J. Phys. 5 (2017) 171-180.
[12]  Schwarzschild, K. Ueber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Koeniglich Preussischen Akademie der Wissenschaften zu Berlin 1 (1916a) 189-196.
[13]  Schwarzschild, K. Ueber das Gravitationsfeld einer Kugel aus inkompressibler Fluessigkeit nach der Einstein’schen Theorie. Sitz.ber. Koen. Preuss, Akad. Wiss. I (1916b) 424-434.
[14]  Schwarzschild, K. Letter from K. Schwarzschild to A. Einstein dated 22 December 1915. The Collected Papers of Albert Einstein 8 A, The Berlin Years: Correspondence, 1014-1918, doc 169. Schulmann, R; Kox, A. J.; Jannssen, M.; Illy J. (eds.) Hebrew University of Jerusalem and the Princeton University Press (1997).
[15]  Gerlitz, T. G. M. The Mysterious Finestucture Constant α in Quantum Mechanics. Advanced Engineering and Applied Sciences: An International Journal. 5 (2015a) 79-82.
[16]  Melvin, M. A. Pure magnetic and electric geons. Phys. Lett. 8 (1964) 65-68.
[17]  Boyer, T. H. Electrostatic potential energy leading to a gravitational mass change for a system of two point charges. Am. J. Phys. 47 (1979) 129-131.
[18]  Carter, B. Black Hole equilibrium states. General Relativity and Gravitations 41 (2009) 2873-2938.
[19]  Carter, B. Black hole equilibrium states. General Relativity and Gravitation 42 (2010) 653-744.
[20]  Wald, R. M. General Relativity. The University of Chicago Press, Chicago (1984).
[21]  Wesson, P. S. The application of dimensional analysis to cosmology. Space Science Reviews 27 (1980) 117-121.
[22]  Goedel, K. An Example of a New Type of Cosmological Solutions of Einstein´s Field Equations of Gravitation. Rev. Mod. Phys. 21 (1949) 447-450.
[23]  Einstein, A. Die Grundlage der allgemeinen Relativitaetstheorie. Ann. Phys. 49 (1916) 769-822.
[24]  Gerlitz, T. G. M. Superluminality and Finite Potential Light-Barrier Crossing. Int. J. of Research in Pure and Applied Physics 5 (2015b) 19-24.
[25]  Sommerfeld, A. Zur Quantentheorie der Spektrallinien. Annalen der Physik. 51 (1916) 1-94, 125-167.
[26]  Eriksen, E.; Grøn, Ø. Electrodynamics of hyperbolically accelerated charges V. the field of a charge in the Rindler space and the Milne space. Ann. Phys. 313 (2004) 147-196.
[27]  Griffiths, D.J.; Owen, R.E. Mass renormalization in classical electrodynamics. Am. J. Phys. 51 (1983) 1120-1126.
[28]  Chandrasekhar, S. The Mathematical Theory of Black Holes. Oxford University Press (1998) p. 205.
[29]  Carter, B. Global Structure of the Kerr Family of Gravitational Fields, Phys. Rev. 174 (1968) 1559-1571.
[30]  Harada, T. Is there a black hole minimum mass ? Phys. Rev. D 74 (2006) 084004.
[31]  Carter, B. Axisymmetric Black Hole Has Only Two Degrees of Freedom. Phys. Rev. Lett. 26 (1971) 331-336.
[32]  Bardeen, J. M.; Carter, B.; Hawking S. W. The four laws of black hole mechanics. Comm. Math. Phys. 31 (1973) 161-170.
[33]  Page, D. N. Hawking radiation and black hole thermodynamics. New J. Phys. 7 (2005) 203-209.
[34]  Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 14 (1965) 57-68.
[35]  Thorne, K. S. Disk-accretion Onto a Black Hole. Astrophys. J. 191 (1974) 507-511.
[36]  Thorne, K. S.; Price, R. H. Black holes: the membrane paradigm. Yale University Press (1986).
[37]  Tolman, R. C.; Ehrenfest, P.; Podolsky, B. On the Gravitational Field Produced by Light. Phys. Rev. 37 (1931) 602-607.
[38]  Copperstock, F. I.; Faraoni, V. The gravitational interaction of light. Class. Quant. Grav. 10 (1993) 1189-1204.
[39]  McClintock, J. E.; Remillard, R. A. Black Hole Binaries. In: Lewin, W.; van der Klis, M. Compact Stellar X-ray Sources. Cambridge University Press (2006) sect. 4.1.5
[40]  Carroll, S. Spacetime and Geometry. Addison Wesley, New York, Ny (2004).
[41]  Finkelstein, D. Past-Future Asymmetry of the Gravitational Field of a Point Particle. Phys. Rev. 110 (1958) 965-967.
[42]  Ruffini, R.; Wheeler, J. A. Introducing the black hole. Physics Today 24 (1971) 30-41.