International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2017, 5(5), 171-180
DOI: 10.12691/ijp-5-5-5
Open AccessArticle

An Idea to a World inside a Black Hole

T. G.M. Gerlitz1, and W. Walden1

1Department of Computer Sciences, Technological University of Panama, Republic of Panama

Pub. Date: October 24, 2017

Cite this paper:
T. G.M. Gerlitz and W. Walden. An Idea to a World inside a Black Hole. International Journal of Physics. 2017; 5(5):171-180. doi: 10.12691/ijp-5-5-5


An investigation on black holes reveals interesting new data. Due to the many speculations about the inside of black holes a concept is developed to allow consideration of the properties occuring inside on a model consisting of an electromagnetic wave. The advantage of the current model is that the investigation is based on a mass originated from even that wave and rather avoids to base the study on an already existing massive mass, which then preliminary excludes any transparent imagination in that field. The theory starts on a classical treatment to later incorporate relativistic considerations leading finally to the transformation equations appropriate for a description of an anti-world. On the basis of the photo sphere the Schwarzschild radius can be determined, which is completely free and independent then on any preliminary given conditions those could ban further in-depth treatment of that task. It is shown each of the two frames reveals individually its own Schwarzschild radius, both of them being reciprocal to each other. In spite of their distinct characteristics of the frames inside and outside a black hole it can be stated out those radii touch each other. A comparison of the two frames can be established by a set of transformation equations to justify the physical properties of the two frames are ideally mirrored in accordance to CPT-operation. The possibility of an anti-universe inside a black hole is discussed.

Charge conjugation parity time reversal

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Quinion, M. Black Hole. World Wide Words. (2008).
[2]  Misner, C.; Thorne, K. S.; Wheeler, J. Gravitation. W. H. Freeman and Company. (1973).
[3]  Chandrasekhar, S. Mathematical Theory of Black Holes. Oxford University Press. (1999).
[4]  Planck, M. Ueber irreversible Strahlungsvorgaenge. Sitz.ber. Koenigl. Preuss. Akad. Wiss. Berlin 5 (1899). 440-480.
[5]  Tomilin, K. A. Natural Systems of Units: To the Centenary Anniversary of the Planck System. Proceedings Of The XXII Workshop On High Energy Physics And Field Theory (1999). 287-296.
[6]  Harwit, M. Astronomical concepts. Astronomy and astrophysics library (3rd ed.). Springer (1998). pp. 72-75.
[7]  Mohr, P. J.; Taylor, B. N.; Nevell, D. B. CODATA Recommended Values of the Fundamental Physical Constants: 2006. Rev. Mod. Phys. 80 (2008). 633-730.
[8]  Wald, R. M. General Relativity. University of Chicago Press. (1984).
[9]  Schwarzschild, K. Ueber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Koeniglich Preussischen Akademie der Wissenschaften zu Berlin 1 (1916). 189-196.
[10]  Hawking, S. W. Black Holes and Thermodynamics. Phys. Rev. D 13 (1976). 191-187.
[11]  Goedel, K. An Example of a New Type of Cosmological Solutions of Einstein´s Field Equations of Gravitation. Rev. Mod. Phys. 21 (1949). 447-450.
[12]  Foroozani, N.; Naghiloo, M.; Tan, D.; Murch, K. Correlations of the Time Dependent Signal and the State of a Continuously Monitored Quantum System. Phys. Rev. Lett. 116. (2016). 110401.
[13]  Wheeler, J. A. A Journey into Gravity and Spacetime. Scientific American Library, W. H. Freeman & Co, New York (distr.) New York. (1990).
[14]  Hilbert, D. Die Grundlagen der Physik. Koenigliche Gesellschaft der Wissenschaften zu Goettingen, Mathematisch-Physikalische Klasse, Nachrichten. (1915). 395-407.
[15]  Einstein, A. Die Grundlage der allgemeinen Relativitaetstheorie. Ann. Phys. 49. (1916). 769-822.
[16]  Faber, R. L. Differential Geometry and Relativity Theory: An Introduction. Marcel Dekker, Inc., New York, N. Y. (1983).
[17]  Cao, Z.; Cao, H. G. Unified Field Theory and the Hierarchical Universe. Int. J. Phys. 1. (2013). 162-170.
[18]  Friedmann, A. Ueber die Kruemmung des Raumes. Z. Phys. A 10 (1922) 377-384
[19]  Friedmann, A. Uebr die Moeglichkeit einer Welt mit konstanter negativer Kruemmung des Raumes. Z. Phys. A 21. (1924). 326-332.
[20]  Lemaître, G. Un universe homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles A 47. (1927). 49-56.
[21]  Lemaître, G. l’Universe en expansion. Annales de la Société Scientifique de Bruxelles A 53. (1933). 51-85.
[22]  Robertson, H. P. Kinematics and world structure. Astrophysical J. 82. (1935). 284-301.
[23]  Robertson, H. P. Kinematics and world structure II. Astrophysical J. 83. (1936a). 187-201.
[24]  Robertson, H. P. Kinematics and world structure III. Astrophysical J. 83. (1936b). 257-271.
[25]  Walker, A. G. On Milne’s theory of world-structure. Proc. Lond. Math. Soc. 2 42. (1937). 90-127.
[26]  Poplawski, N. J. Radial motion into an Einstein-Rosen bridge. Phys. Lett. B 687. (2010). 110-113.
[27]  Poplawski N. J. Nonsingular, big-bounce cosmology from spinor-torsion coupling. Phys. Rev. D 85. (2012). 107502.
[28]  Fahri, E.; Guth, A. H. An Obstacle to Creating a Universe in the Laboratory. Phys. Lett. B 183. (1987). 149-155.
[29]  Aurich, R.; Lustig, S.; Steiner, F.; Then, H. Hyperbolic Universes with a Horned Topology and the CMB Anisotropy. Classical Quantum Gravity 21. (2004). 4901-4926.
[30]  Adelberger, E., Dvali, G., Gruzinov, A. Photon-Mass Bound Destroyed by Vortices. Phys. Rev. Lett. 98. (2007). 2019-1028.
[31]  Amsler, C. et. al. (Particle Data Group). Phys. Lett. B 667. (2008). 1-6.
[32]  Chibisov, G. V. Astrophysical upper limits on the photon rest mass. Soviet Physics Uspekhi 19. (1976). 624-626.
[33]  Pound, R.; Rebka, G. Apparent Weight of Photons. Phys. Rev. Lett. 4. (1960). 337-341.
[34]  Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium. 7. (1936).347-353.
[35]  Einstein, A. Ueber einen die Erzeugung und Verwendung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17. (1905a). 132-148.
[36]  Einstein, A. Zur Elektrodynamik bewegter Koerper. Annalen der Physik 17. (1905b). 891-921.
[37]  Einstein, A. Ist die Traegheit eines Koerpers von seinem Energiegehalt abhaengig? Annalen der Physik 18 (1905c). 639-641.
[38]  Einstein, A. Ueber das Relativitaetsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivitaet und Elektronik IV. (1908). 411-462.
[39]  Einstein, A. Ueber die Entwicklung unserer Anschauungen ueber das Wesen und die Konstitution der Strahlung, Phys. Z. 10 .(1909). 817-825.
[40]  Newton, I. Principia Mathematica Philosophie Naturalis (1686). (Reprinted by University of California Press, Berkeley, California (1934).
[41]  De Broglie, L. V. Rayonnement noir et quanta de lumière. Journal de Physique et le Radium 3. (1922a). 422-428.
[42]  De Broglie, L. V. Sur les interférence et la théorie de quanta de lumière. Compt. Ren. 175. (1922b). 811-813.
[43]  De Broglie, L. V. Recheres sur la theorie des quanta. Ph. D. Thesis. Faculté des Sciences, Université de la Sorbonne, Paris (1923a).
[44]  De Broglie, L. V. Ondes et Quanta. Compt. Ren. 177. (1923b). 507-509.
[45]  Heisenberg, W, K. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen Z. Phys.83. (1925). 879-893.
[46]  Dirac, P. A. M. The Quantum Theory of the Electron. Proc. Roy. Soc. A 117. (1928a). 610-624.
[47]  Dirac, P. A. M. The Quantum Theory of the Electron. Part II. Proc. Roy. Soc. London A 118. (1928b). 351-3611.
[48]  Schwabl, F. Quantenmechanik fuer Fortgeschrittene (QM II), 5-th ed. Springer, Berlin & Heidelberg, 2008.
[49]  Gerlitz, T. G. M. Superluminality and Finite Potential Light-Barrier Crossing. Int. J. of Research in Pure and Applied Physics 5. (2015a). 19-24.
[50]  Gerlitz, T. G. M. The Mysterious Finestucture Constant α in Quantum Mechanics. Advanced Engineering and Applied Sciences: An International Journal. 5. (2015b). 79-82.
[51]  Bardeen, J. M. ; Carter, B.; Hawking, S. W. The four laws of black hole mechanics. Comm. Math. Phys. 31. (1973). 161-170.
[52]  Hawking, S. W. Black hole explosions? Nature 248. (1974). 30-31.
[53]  Hawking, S. W.; Penrose, R. The Singularities of Gravitational Collapse and Cosmology. Proc. Royal Soc. A 314. (1970). 529-548.
[54]  Finkelstein, D. Past-Future Asymmetry of the Gravitational Field of a Point Particle. Phys. Rev. 110. (1958). 965-967.
[55]  Israel, W. Event Horizons in Static Vacuum Space-Times. Phys. Rev. 164. (1967). 1776-1781.
[56]  Israel, W. Dark stars: the evolution of an idea. 300 Years of Gravitation. Hawking, S., W.; Israel, W. (eds.), Cambridge University Press. (1989).
[57]  Ford, L. H. The Classical Singularity Theorems and Their Quantum Loopholes. Int. J. Theor. Phys. 42. (2003). 1219-1225.
[58]  Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 14. (1965). 57-64.
[59]  Retter, A.; Heller, S. The revival of white holes as Small Bangs. New Astronomy 17. (2012). 73-75.
[60]  Frolov, V. P.; Novikov, I. D. Black Hole Physics: Basic Concepts and New Developments. Springer (1998). pp. 580-581.