International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2017, 5(4), 121-134
DOI: 10.12691/ijp-5-4-4
Open AccessArticle

The Duality of the Mass as a Basis of the Field-Forces

Hans-Joerg Hochecker1,

1Donaustr. 22, 30519 Hannover, Germany

Pub. Date: June 30, 2017

Cite this paper:
Hans-Joerg Hochecker. The Duality of the Mass as a Basis of the Field-Forces. International Journal of Physics. 2017; 5(4):121-134. doi: 10.12691/ijp-5-4-4


The matter-waves, well-known from numerous experiments, can be described as beat waves of two counter-moving waves. Thus mass is oscillating space-time, which results from the superposition of two counter-moving space-time waves. The duality of this counter-motion derives the duality of the electric force. And the inertia of the mass arises from the frequency. The electric force arises from a space- or energy- shift. Gravitation arises from the change of the energy-density of the electric field (by which the gravitational acceleration is independent of the mass) and yields the same results as GR. And the magnetic field appears to be an angle between the direction in which the electric field propagates and the direction in which it exerts its force.

gravitation magnetism electric fields relativity quantum mechanics

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 3


[1]  Davies, Paul (1986), The Forces of Nature, Cambridge Univ. Press 2nd ed.
[2]  Feynman, Richard (1967), The Character of Physical Law, MIT Press.
[3]  L. de Broglie, Recherches sur la théorie des quanta (Researches on the quantum theory), Thesis (Paris), 1924; L. de Broglie, Ann. Phys. (Paris) 3, 22 (1925). English translation by A.F. Kracklauer.
[4]  Broglie, Louis de, The wave nature of the electron Nobel Lecture, 12, 1929
[5]  Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman.
[6]  Einstein, A (1918). Ueber Gravitationswellen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin. Part 1: 154-167.
[7]  Charles W. Misner, Kip S. Thorne und John A. Wheeler: Gravitation. Freeman, San Francisco 1973.
[8]  Heisenberg, W. (1927), Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik (in German), 43 (3-4): 172-198, Bibcode: 1927ZPhy... 43..172H.
[9]  Claude Cohen-Tannoudji; Bernard Diu; Franck Laloë (1996), Quantum mechanics, Wiley-Interscience: Wiley, pp. 231-233.
[10]  Manjit Kumar, Quantum: Einstein, Bohr, and the Great Debate about the Nature of Reality, W. W. Norton, 2010.
[11]  Niels Bohr (1913). On the Constitution of Atoms and Molecules, Part I. Philosophical Magazine. 26 (151): 1-24.
[12]  Niels Bohr (1913). On the Constitution of Atoms and Molecules, Part II Systems Containing Only a Single Nucleus. Philosophical Magazine. 26 (153): 476-502.
[13]  Niels Bohr (1913). On the Constitution of Atoms and Molecules, Part III Systems containing several nuclei. Philosophical Magazine. 26: 857-875.
[14]  Paul Tipler and Ralph Llewellyn (2002). Modern Physics (4th ed.). W. H. Freeman.
[15]  Einstein, Albert: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? In: Annalen der Physik. Band 323, Nr. 13, 1905, S. 639-643
[16]  Albert Einstein: Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie. In: Annalen der Physik. Band 325, Nr. 8, 1906, S. 627-633.
[17]  Albert Einstein: Über die vom Relativitätsprinzip geforderte Trägheit der Energie. In: Annalen der Physik. Band 328, Nr. 7, 1907, S. 371-384.
[18]  O'Luanaigh, C. (14 March 2013). New results indicate that new particle is a Higgs boson. CERN. Retrieved 2013-10-09.
[19]  Close, Frank (2011). The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe. Oxford: Oxford University Press.
[20]  Jim Baggott (2012). Higgs: The invention and discovery of the 'God Particle'. Oxford University Press.
[21]  Ted Jaeckel (2007). The God Particle: The Discovery and Modeling of the Ultimate Prime Particle. Universal-Publishers.
[22]  Dirac, Paul (1996), General Theory of Relativity, Princeton University Press.
[23]  Einstein, Albert (1916), Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik 49.
[24]  Hartle, James B. (2003), Gravity: an Introduction to Einstein's General Relativity, San Francisco: Addison-Wesley.
[25]  A. Einstein, Zur Elektrodynamik bewegter Körper Annalen der Physik 17, 891-921 (1905).
[26]  Wolfgang Rindler (1991). Introduction to Special Relativity (2nd ed.), Oxford University Press.
[27]  Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik. 17 (6): 132-148.
[28]  Einstein, A. (1917). Zur Quantentheorie der Strahlung. Physikalische Zeitschrift. 18: 121-128.
[29]  M. Planck: Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. In: Verhandlungen der Deutschen physikalischen Gesellschaft. 2, Nr. 17, 1900, S. 245, Berlin (vorgetragen am 14. Dezember 1900).
[30]  Feynman, R. P.; Leighton, R. B.; Sands, M. (1963). The Feynman Lectures on Physics, Volume 1. Addison-Wesley.
[31]  Hochecker, Hans-Joerg. The Magnetism as an Electric Angle-effect. International Journal of Physics 2.4 (2014): 118-123.
[32]  Hans-Joerg Hochecker. On the Origin of Magnetism and Gravitation and on the Nature of Electricity and Matter. International Journal of Physics. Vol. 4, No. 4, 2016, pp 85-105.
[33]  Hochecker, Hans-Joerg, Theory Of Objects Of Space,
[34]  Roger Bach, Damian Pope, Sy-Hwang Liou, Herman Batelaan Controlled double-slit electron diffraction. In: New Journal of Physics, Roger Bach et al 2013 New J. Phys. 15 033018.
[35]  Joseph John Thomson, On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies, Philosophical Magazine, 1881, 5 11 (68): 229-249.
[36]  Einstein, Albert: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? In: Annalen der Physik. Band 323, Nr. 13, 1905, S. 639-643.
[37]  James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Transactions 155, 1865, Seiten 459-512.
[38]  D.J. Griffiths, Introduction to Electrodynamics (3rd Edition), Pearson Education, Dorling Kindersley, 2007.
[39]  I.S. Grant, W.R. Phillips, Electromagnetism (2nd Edition), Manchester Physics, John Wiley & Sons, 2008.
[40]  Hubble, E. P. (1937). The Observational Approach to Cosmology.
[41]  Einstein A, Podolsky B, Rosen N; Podolsky; Rosen (1935). Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?. Phys. Rev. 47 (10): 777-780.
[42]  Schrödinger E (1935). Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society. 31 (4): 555-563.
[43]  Schrödinger E (1936). Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society. 32 (3): 446-452.
[44]  Matson, John (13 August 2012). Quantum teleportation achieved over record distances. Nature.
[45]  Lee, K. C.; Sprague, M. R.; Sussman, B. J.; Nunn, J.; Langford, N. K.; Jin, X.- M.; Champion, T.; Michelberger, P.; Reim, K. F.; England, D.; Jaksch, D.; Walmsley, I. A. (2 December 2011). Entangling macroscopic diamonds at room temperature. Science. 334 (6060): 1253-1256.
[46]  Olaf Nairz, Markus Arndt, and Anton Zeilinger, Quantum interference experiments with large molecules, American Journal of Physics, 71 (April 2003) 319-325.
[47]  H. Grote: On the possibility of vacuum QED measurements with gravitational wave detectors In: Phys. Rev. D 91, 0220022 - 7 January 2015.
[48]  Antonino Di Piazza, Giorgio Calucci Pair production in a strong magnetic field: the effect of a strong background gravitational field Astropart.Phys. 24: 520-537, 2006.