International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2013, 1(5), 110-114
DOI: 10.12691/ijp-1-5-3
Open AccessArticle

Discussion on Mass in a Gravitational Field

Zhan Likui1,

1Chinese Academy of Science, HeFei, China

Pub. Date: September 21, 2013

Cite this paper:
Zhan Likui. Discussion on Mass in a Gravitational Field. International Journal of Physics. 2013; 1(5):110-114. doi: 10.12691/ijp-1-5-3

Abstract

In a black hole, no force can prevent matter from collapsing into a point, a gravitational singularity. The problem of the singularity is always a difficult one. We attempt to discuss gravitation from another angle in this work. Based on experimental analysis and theoretical verification, a hypothesis regarding mass in gravitational fields is presented. It can avoid the problem of singularity, and the meaning of gravitation is simple to determine.

Keywords:
gravitational field mass energy covariance

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43, 3, 199, (1975).
 
[2]  Maulik K. Parikh, Frank Wilczek, Hawking radiation as tunnelling, Phys. Rev. Lett., 85, 5042 (2000).
 
[3]  T. Vachaspati, D. Stojkovic, and L. M. Krauss, Observation of incipient black holes and the information loss problem, Phys. Rev. D 76, 024005 (2007).
 
[4]  Wald Robert M, General Relativity, (University of Chicago Press, 1984).
 
[5]  Mannheim, P. D., Alternatives to Dark Matter and Dark Energy, Prog. Part. Nucl. Phys. 56, 2, 340 (2006).
 
[6]  Zeng Qingzhang, Cui Shizi, Relativity and space-time, (Shanxi Science and Technology Press, 1999) [In Chinese].
 
[7]  S. Pakvasa, W. A. Simmons, and T. J. Weiler, Test of equivalence principle for neutrinos and antineutrinos, Phys. Rev. D 39, 1761 (1989).
 
[8]  Wang Renchuan, Introduction to General Relativity, (University of Science and Technology of China Press 1996) [In Chinese].
 
[9]  Irwin I. Shapiro, Testing General Relativity with Radar, Phys. Rev. 141, 1219-1222 (1966).
 
[10]  T. E. Cranshaw and J. P. Schiffer, Measurement of the gravitational redshift with the Mossbauer effect, Proc. Phys. Soc., 84, 245 (1964).
 
[11]  P. A. M. Dirac: Principles of Quantum Mechanics, (Oxford university press, 1958).
 
[12]  D. H. Frisch and J. B. Smith, Measurement of the Relativistic Time Dilation Using Muons, Am. J. Phys. 31, 5, 342 (1963).
 
[13]  S. Weinberg, Gravitation and Cosmology, (John Wiley, New York, 1972).
 
[14]  S Schlamminger, K..-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger, Test of the Equivalence Principle Using a Rotating Torsion Balance, Phys. Rev. Lett. 100, 041101 (2008).
 
[15]  Liang-Cheng Tu et al, The mass of the photon, Rep. Prog. Phys. 68, 77 (2005).
 
[16]  R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, (John Wiley and Sons, 2nd ed. 1985).
 
[17]  G. Vedrenne, Jean-Luc Atteia, The brightest explosions in the Universe, (Springer Berlin Heidelberg New York 2009).
 
[18]  P. Laurent, J. Rodriguez, J. Wilms, M. Cadolle Bel, K. Pottschmidt, and V. Grinberg, Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1, Science. 332, 6028 (2011).
 
[19]  D. J. Mortlock, et al, A luminous quasar at a redshift of z = 7.085, Nature 474, 616-619 (2011).