International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2016, 4(4), 106-112
DOI: 10.12691/ijp-4-4-4
Open AccessArticle

Scattering Events and Heat Conductivity of Layered La2-x SrxCuO4 Superconductors

Rakhi Sharma1, B. D. Indu2, and Pawan Kumar1

1Department of Physics, Gurukula Kangari Vishwavidyalaya, Haridwar-249401, India

2Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, India

Pub. Date: July 07, 2016

Cite this paper:
Rakhi Sharma, B. D. Indu and Pawan Kumar. Scattering Events and Heat Conductivity of Layered La2-x SrxCuO4 Superconductors. International Journal of Physics. 2016; 4(4):106-112. doi: 10.12691/ijp-4-4-4

Abstract

The problem of heat conduction in layered La2-x SrxCuO4 superconductor has been investigated in a new frame work of in-plane and cross-plane concepts with the help of modified Callaway model of thermal conductivity based on relaxation time approximation. Using the many body quantum dynamical theory of the expressions for thermal conductivity in context of in-plane and cross plane have been obtained and results are found in excellent agreement with experimental observations for layered La2-x SrxCuO4 cuprate superconductors. The theory explores the possibility of device fabrication cold in one direction and hot in the other.

Keywords:
relaxation times in-plane and Cross- plane thermal conductivity scattering process

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bardeen, J., Rickayazen G. and Tewordt L., Theory of the thermal conductivity of superconductors, Phys. Rev. B, 113, 982-994, 1959.
 
[2]  Callaway, J., Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046-1051, 1959.
 
[3]  Parrott, J. E. and Stukes, A. D., Thermal conductivity of solids, Pion Limited, London, 1975.
 
[4]  Klemens, P. G., Thermal conductivity and lattice vibrational modes, Sol. Stat. Phys., 7, 1-98, 1958.
 
[5]  Uher, C., Thermal conductivity of High Tc Superconductors, J. Superconductivity, 3, 337-389, 1990.
 
[6]  Cahill, D. G., Goodson, K., and Majumdar, A., Thermometry and Thermal Transport in Micro/ Nanoscale Solid-State Devices and Structures, J. Heat Trans., 124, 223-241, 2002.
 
[7]  Cahill, D. G., Ford, W. K., Goodson, K.E., Mahan, G. D., Majumdar, A., Maris H. J., Merlin, R., and Phillpot, S. R., Nanoscale Thermal Transport, J. Appl. Phys., 93, 793-818, 2003.
 
[8]  Mahan, G.D., Thermal Conductivity, edited by Terry M. Trit, Kluwer Academic/Plenum Publishers, New York, 1-285, 2004.
 
[9]  Narayanamurti, V., Stormer, H. L., Chin, M. A., Gossard, A.C., and Wiegmann, W., Selective Transmission of High-Frequency Phonons by a Superlattice: The dielectric Phonon Filter, Phys. Rev. Lett., 43, 2012-2016, 1979.
 
[10]  Varshney, D., Chaudhry, K. K. and Singh, R. K., Analysis of in-plane thermal conductivity anomalies in cuprate Superconductors, New J. Phys., 5, 72.1-72.17, 2003.
 
[11]  Klemens, P. G., The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc. A, 68, 1113-1128, 1955.
 
[12]  Carruthers, P., Theory of thermal conductivity of solids at low temperatures, Rev. Mod. Phys., 33, 92-138, 1961.
 
[13]  Ziman, J. M., Electrons and Phonons, Clarendon Press, Oxford, U. K., 1962.
 
[14]  De Hass, W. J., Biermasz, T., Thermal conductivity in diamond and potassium chloride, Physica 5 , 47-53, 1938.
 
[15]  Casimir, H. B. G., Note on the Conduction of Heat in Crystals, Physica, 5, 495-500, 1938.
 
[16]  Hyldgaard, P., and Mahan, G. D., Phonon Superlattice Transport, Phys. Rev. B, 56, 10754-10757, 1997.
 
[17]  Chen, G., Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures, J. Heat Trans., 119, 220-229 1997.
 
[18]  Saini Richa, Ashokan Vinod, Indu, B.D., Phonon conduction in superlattices, Superlattices and Microstructures, 82, 574-583, 2015.
 
[19]  Erdos, P., and Halley, S. B., Low-Temperature Thermal Cond--uctivity of Impure Insulators, Phys. Rev.,184 , 951-967, 1969.
 
[20]  Gairola, R. P., Low-Temperature Lattice Thermal Conductivity of Nonmetallic Solids with Isotopic Impurities, Phys. State Solidi B, 125, 65-74, 1984.
 
[21]  Bahuguna, B.P., Painuli, C. P. , and Indu, B. D., Phonon Heat Con-ductivity of Garnets Containing Rare Earth Ions, Acta Phys. Pol. A, 80, 527-554, 1991.
 
[22]  Ward, A., and Broido, D. A., Intrinsic lattice thermal conductivity of Si/Ge and GaAs/AlAs superlattice, Phys. Rev. B, 77, 245328-1-7, 2008.
 
[23]  Broido, D. A., Ward, A. and Mingo, N., Lattice thermal conductivity of silicon from empirical interatomic potentials, Phys. Rev. B, 72 , 014308-1-8, 2005.
 
[24]  Ward, A., Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B, 80, 125203-1-8, 2009.
 
[25]  Pathak, K. N., Theory of anharmonic crystals., Phys. Rev., 139, A1569-A1580, 1965.
 
[26]  Sharma, P.K., and Bahadur, R., Thermal Conductivity for Phonon Scattering by Substitutional Defects in Crystals, Phys. Rev. B, 12, 1522-1530, 1975.
 
[27]  Indu, B. D, Theory of lattice specific heat of an isotopically disordered anharmonic crystal, Int. J. Mod. Phys. B, 4, 1379-1393, 1990.
 
[28]  Indu, B. D, Enhanced phonon density of states in impure anharmonic crystals, Mod. Phys. Lett. B, 6, 1665-1672, 1992.
 
[29]  Frohlich, H., New perspective in modern physics, edited by R. E. Marshak , John Wiley, New York, 1966.
 
[30]  Fan, H. Y., Elements of solid state physics, John Wiley, New York, 1987.
 
[31]  Ashokan, V., Indu, B. D. and A. Kr. Dimri, Signature of electron phonon interaction in high temperature superconductors, AIP Advances, 1, 032101-1-032101-16, 2011.
 
[32]  Indu, B. D., Low temperature lattice thermal conductivity of Mg2 Sn, Mg2Si, and Mg2Ge, Nuovo Cimento B, 58, 345-350, 1980.
 
[33]  Hochbaum, A., Chen, R., Delgado, R., W., Liang, Garnett, E., Najarian, M., Majumdar, A., and Yang, P., “Enhanced Thermoelectric Performance of Rough Silicon Nanowires", Nature, 451, 163-167, 2008.
 
[34]  Pohl, R. O., Thermal Conductivity and Phonon Resonance Scattering, Phys. Rev. Lett., 8, 481-483, 1962.
 
[35]  Holland, M.G., Analysis of thermal conductivity, Phys. Rev., 132, 2461-2471, 1963.
 
[36]  Kristoffel, N. and Rubin, P., Localized electron levels of cuo2 planes perturbed by detects in high-Tc superconductors, Rev. Solid State Sci., 5, 449-460,1991.
 
[37]  Ashokan, V. and Indu, B.D., Theory of thermal conductivity of high temperature superconductors: a new approach, Mod. Phys. Letters B, 25, 663-678, 2011.