International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2013, 1(4), 94-100
DOI: 10.12691/ijp-1-4-3
Open AccessArticle

Finite Kuramoto System with Shear and Symmetry

Arindam Chakraborty1, Anirban Ray2 and A. Roy Chowdhury2,

1Department of Physics, Swami Vivekananda Institute of Science and Technology, Sonarpur, Kolkata, India

2High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India

Pub. Date: August 05, 2013

Cite this paper:
Arindam Chakraborty, Anirban Ray and A. Roy Chowdhury. Finite Kuramoto System with Shear and Symmetry. International Journal of Physics. 2013; 1(4):94-100. doi: 10.12691/ijp-1-4-3

Abstract

In this paper we study the locally coupled finite Kuramoto Oscillator system with shear under periodic boundary condition. We also show how analytical solutions can be obtained from symmetry conditions. Existence of attractors and bifurcation patterns are revealed in an elegant way through these solutions. The synchronized regions are identified in the parameter space and critical situations are discussed. an important outcome of present analysis is the derivation of analytical form of the Poincare map.

Keywords:
discreet Kuramoto oscillators bifurcation Poincare section

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Arthur T. Winfree. The Geometry of Biological Time, volume 8 of Biomathematics. Springer-Verlag, Berlin, Germany, 1980.
 
[2]  Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Chemistry Series. Dover Publications, 2003. originally published: Springer Berlin, New York, Heidel- berg, 1984.
 
[3]  G.B. Ermentrout. Oscillator death in populations of all to all coupled nonlinear oscillators. Physica D: Nonlinear Phenomena, 41(2):219-231, 1990.
 
[4]  Hiroaki Daido. Order function theory of macroscopic phase-locking in globally and weakly coupled limit-cycle oscillators. International Journal of Bifurcation and Chaos, 07(04):807-829, 1997.
 
[5]  Liwei Ren and Bard Ermentrout. Phase locking in chains of multiple-coupled oscillators. Physica D: Nonlinear Phenomena, 143(14):56-73, 2000.
 
[6]  Joel T. Ariaratnam and Steven H. Strogatz. Phase dia- gram for the winfree model of coupled nonlinear oscilla- tors. Phys. Rev. Lett., 86:4278-4281, May 2001.
 
[7]  J. A. Acebr´on, A. Perales, and R. Spigler. Bifurcations and global stability of synchronized stationary states in the kuramoto model for oscillator populations. Phys. Rev. E, 64:016218, Jun 2001.
 
[8]  Edward Ott, Paul So, Ernest Barreto, and Thomas Antonsen. The onset of synchronization in systems of glob- ally coupled chaotic and periodic oscillators. Physica D: Nonlinear Phenomena, 173(12):29-51, 2002.
 
[9]  Juan A. Acebr´on, L. L. Bonilla, Conrad J. P´erez Vicente, F´elix Ritort, and Renato Spigler. The kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137-185, Apr 2005.
 
[10]  Steven H. Strogatz. From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(14):1-20, 2000.
 
[11]  S. H. Strogatz zand R. E. Mirollo. Collective synchronization in lattices of nonlinear oscillators with random- ness. Journal of Physics A: Mathematical and General, 21(13):L699-L705, 1988.
 
[12]  Yu. Maistrenko, O. Popovych, O. Burylko, and P. A. Tass. Mechanism of desynchronization in the finite- dimensional kuramoto model. Phys. Rev. Lett., 93:084102, Aug 2004.
 
[13]  V. Maistrenko, A. Vasylenko, Yu. Maistrenko, and E. Mosekilde. Phase chaos and multistability in the discrete kuramoto model. Nonlinear Oscillations,11(2):229-241, 2008.
 
[14]  O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L.Maistrenko, and O. Sudakov. Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Phys. Rev. E, 85:036210, Mar 2012.
 
[15]  Volodymyr Maistrenko, Anna Vasylenko, Yuri Maistrenko, and Erik Mosekilde. Phase chaos in the discrete kuramoto model. International Journal of Bifurcation and Chaos, 20(06):1811-1823, 2010.
 
[16]  BenjaminI. Triplett, DanielJ. Klein, and KristiA. Mor- gansen. Discrete time kuramoto models with delay. In PanosJ. Antsaklis and Paulo Tabuada, editors, Networked Embedded Sensing and Control, volume 331 of Lecture Notes in Control and Information Science, pages 9-23. Springer Berlin Heidelberg, 2006.
 
[17]  Hidetsugu Sakaguchi and Yoshiki Kuramoto. A soluble active rotater model showing phase transitions via mutual entertainment. Progress of Theoretical Physics,76(3):576-581, 1986.
 
[18]  Ernest Montbri´o and Diego Paz´o. Shear diversity prevents collective synchronization. Phys. Rev. Lett., 106:254101, Jun 2011.
 
[19]  Diego Paz´o and Ernest Montbri´o. The kuramoto model with distributed shear. EPL (Europhysics Letters), 95(6):60007, 2011.
 
[20]  Paulo F.C. Tilles, Hilda A. Cerdeira, and Fernando F. Ferreira. Local attractors, degeneracy and analyticity: Symmetry effects on the locally coupled kuramoto model. Chaos, Solitons And Fractals, 49(0):32-46, 2013.
 
[21]  A. Nama junas, K. Pyragas, and A. Tamaevicius. An electronic analog of the mackey-glass system. Physics Letters A, 201(1):42-46, 1995.
 
[22]  Satoshi Sano, Atsushi Uchida, Shigeru Yoshimori, And Ra jarshi Roy. Dual synchronization of chaos in mackey- glass electronic circuits with time-delayed feedback. Phys. Rev. E, 75:016207, Jan 2007.
 
[23]  S. Banerjee, D. Ghosh, A. Ray, and A. Roy Chowdhury. Synchronization between two different time-delayed sys- tems and image encryption. EPL (Europhysics Letters), 81(2):20006, 2008.
 
[24]  S. Madruga, S. Boccaletti, and M. A. Matas. Effect of a variable delay in delayed dynamical systems. Inter- national Journal of Bifurcation and Chaos, 11(11):2875-2880, 2001.
 
[25]  E. M. Shahverdiev and K. A. Shore. Generalized synchronization in time-delayed systems. Phys. Rev. E, 71:016201, Jan 2005.