International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2013, 1(4), 77-83
DOI: 10.12691/ijp-1-4-1
Open AccessArticle

Anisotropic Bianchi Type-II Viscous Fluid Models with Time-Dependent Gravitational and Cosmological Constants

M. K. Singh1, M. K. Verma1 and Shri Ram1,

1Department of Applied Mathematics, Indian Institute of Technology, Banaras Hindu University, Varanasi, India

Pub. Date: June 18, 2013

Cite this paper:
M. K. Singh, M. K. Verma and Shri Ram. Anisotropic Bianchi Type-II Viscous Fluid Models with Time-Dependent Gravitational and Cosmological Constants. International Journal of Physics. 2013; 1(4):77-83. doi: 10.12691/ijp-1-4-1


This paper deals with totally anisotropic Bianchi type-II cosmological models filled with a bulk viscous fluid in the presence of time-varying gravitational and cosmological constants. Exact solutions of the field equations are obtained by applying a special law of variation for Hubble’s parameter which yields a constant value of the deceleration parameter. Two different physically viable models of the universe are presented in two types of cosmologies, one with power-law expansion and other one with exponential expansion. Cosmological model with power-law expansion has an initial big-bang type singularity at t = 0, whereas the model with exponential expansion has a singularity in infinite past. The physical and dynamical properties of the models are discussed.

Bianchi II bulk viscosity gravitational constant cosmological constant

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  M. P. Ryan and L. C. Shepley, Homogeneous Relativistic Cosmologies, Princeton University Press, Priceton, New Jersey, 1975.
[2]  E. Asseo and H. Sol, Extragalactic Magnetic Fields. Phys. Rep. 148, 407-435, 1987.
[3]  J. Hajj-Boutros, A Method for generating Bianchi type-II cosmological Models. J. Math. Phys. 27, 1592-1594, 1986.
[4]  J. Hajj-Boutros, Cosmological Models. Int. J. Theor. Phys. 28, 487-493, 1989.
[5]  J. K. Singh and Shri Ram, Cylindrically Symmetric Scalar Waves in General Relativity. IL Nuovo Cimento B 111, 757-762, 1996.
[6]  R. Venkateswarlu and D. R. K. Reddy, Exact Bianchi type-II, VIII and IX Cosmological Models with Matter and Electromagnetic Fields in Lyra’s Geometry. Astrophys. Space Sci. 182, 97-103, 1991.
[7]  A. A. Coley and J. Wainright, Qualitative Analysis of Two-Fluid Bianchi Cosmologies. Class. Quantum Grav. 9, 651-665, 1991.
[8]  C. P. Singh and S. Kumar, Bianchi Type-II Inflationary Models with Constant Deceleration Parameter in General Relativity. Pramana J. Phys. 68, 707-720, 2007.
[9]  A. Pradhan, H. Amirhashchi and M. K. Yadav, LRS Bianchi Type-II String Cosmological Models for Perfect Fluid Distribution in General Relativity. Fizika B 18, 35-42, 2009.
[10]  A. Pradhan, P. Ram and R. Singh, LRS Bianchi Type-II String Cosmological Model in General Relativity. Astrophys. Space Sci. 331, 275-279, 2011.
[11]  H. Amirhashchi and H. Zainuddin, Some LRS Bianchi Type-II String-Dust Cosmological Models in General Relativity. Elect. J. Theor. Phys. 23, 213-220, 2010.
[12]  S. Weinberg, Gravitation and cosmology. Wiley New York Chap. 15, 1972.
[13]  C. W. Misner, The Isotropy of the Universe. Astrophys J. 151, 431-457, 1968.
[14]  V. A. Belinskii and I. M. Khalatnikov, Influence of Viscosity on the Character of Cosmological Evolution. Sov. Phys. JETP 42, 205-210, 1976.
[15]  G. L. Murphy, Big-Bang Model without Singularities. Phys. Rev. D 8, 4231-4233, 1973.
[16]  P. G. Bergmann, Comments on Scalar Tensor Theory. Int. J. Theor. Phys. 1, 25-36, 1968.
[17]  J. Drietlein, Broken Symmetry and the Cosmological Constant. Phys. Rev. Lett. 33, 1243- 1244, 1974.
[18]  G. F. F, Ellis, c is the speed of Light, Isn’t? Am. J. Phys. 73, 240-247, 2005.
[19]  A. Beesham, Comment on the Paper “The Cosmological Constant as a Possible Primordial Link to Einstein’s Theory of Gravity, the Problem of Hadronic Matter and Problem”. Nuovo Cimento B 96, 17-20, 1986.
[20]  M.S. Berman, Cosmological Models with Variable Gravitational and Cosmological Constant “Constant”. Gen. Relativ. Gravit. 23, 465-496, 1991.
[21]  D. Kalligas, P. Wesson and C. W. F. Everitt, Flat FRW models with variable G and Λ Gen. Relativ. Gravit. 24, 351-357, 1992.
[22]  A. I. Arbab, Cosmological Models with Variable Cosmological and Gravitational “Constants” and Bulk Viscous Models. Gen. Relativ. Gravit. 29, 6174, 1997.
[23]  Abdussattar and R. G. Vishwakarma, Some FRW models with variable G and Λ. Class. Quantum Grav. 14, 945-953, 1997.
[24]  J. D. Barrow and P. Parsons, Behavior of cosmological models with varying G. Phys. Rev. D 55, 1906-1936, 1997.
[25]  A. Pradhan and I. Chakraborty, LRS Bianchi I models with time varying gravitational and cosmological constants. Gravitation and Cosmology 7, 55-57, 2001.
[26]  A. Pradhan and V. K. Yadav, Bulk Viscous Anisotropic Cosmological Models with Variable G and Λ. Int. J. Mod. Phys. D 11, 893-912, 2002.
[27]  G. P. Singh and S. Kotambkar, Higher-Dimensional Dissipative Cosmology with Varying G and Λ. Gravitation and Cosmology 9, 206-210, 2003.
[28]  A. Pradhan, A. K. Singh and S. Otarod, FRW Universe with Variable G and Λ Terms. Roman. J. Phys. 52, 415-429, 2007.
[29]  J. P. Singh, A. Pradhan and A. K. Singh, Bianchi Type-I Cosmological Models with Variable G and Λ in General Relativity. Astrophys. Space Sci.314, 83-88, 2008.
[30]  T. Padmanabhan and S. M. Chitre, Viscous Universes. Phys. Lett. A 120, 433-436, 1987.
[31]  A. Beesham, Bianchi type I Cosmological Models with Variable G and Λ. Gen. Relativ. Gravit. 26, 159-165, 1994.
[32]  G. P. Singh and A. Y. Kale, Anisotropic Bulk Viscous Cosmological Models with Variable G and Λ. Int. J. Theor. Phys. 48, 1177-1185, 2009.
[33]  C. P. Singh, S. Kumar and A. Pradhan, Early Viscous Universe with Variable Gravitational and Cosmological ‘Constants’.Class. Quantum Gravity 24, 455-474, 2007.
[34]  A. Pradhan and S. S. Kumhar, LRS Bianchi Type-II Bulk Viscous Fluid Universe with Decaying vacuum Energy DensityΛ. Int. J. Theor.Phys. 48, 1466-1477, 2009.
[35]  J. P. Singh, R. K. Tiwari and P. Shukla, Bianchi Type-III Cosmological Models with Gravitational Constant G and the Cosmological Constant Λ. Chin. Phys. Lett. 12, 3325-3327, 2007.
[36]  S. Chakraborty and A. Roy, Anisotropic Cosmological Models with Bulk Viscosity for Variable G and Λ. Astrophys. Space Sci. 313, 389-392, 2008.
[37]  R. Bali and S. Tinker, Bianchi Type III Bulk Viscous Barotropic Fluid Cosmological Models with Variable 𝐺 and Λ. Chin. Phys. Lett. 26, 029802-029802-029805, 2009.
[38]  M. K.Verma and Shri Ram, Hypersurface-Homogeneous Bulk Viscous Fluid Space-Time with Time-Dependent Cosmological Term. Astrophys. Space Sci. 326, 299-304, 2010.
[39]  M. K. Verma and Shri Ram, Bulk Viscous Bianchi Type-II Cosmological Models with Time-Dependent G and Λ. Int. J. Theor.Phys. 49, 693-700, 2010.
[40]  M. K. Verma and Shri Ram, Bianchi Type VI0 Bulk Viscous Fluid Models with Variable Gravitational and Cosmological Constant. Appl. Math. 2, 348-354, 2011.
[41]  H. Amirshashchi, LRS Bianchi Type-II Stiff Fluid Cosmological Models with Decaying Vacuum Energy Density Λ in General Relativity. Phys. Lett. B 697, 429-433. 2011.
[42]  J. K. Singh and N. K. Sharma, Some Bianchi Type-II Cosmological Models in Brans-Dicke Theory. Astrophys. Space Sci. 327, 293-298, 2010.
[43]  K. Jotania, P. Yadav and S. A. Faruqi, Magnetized String Cosmology in Anisotropic Bianchi-II Space-time with Variable Cosmological Term-Λ. Int. J. Theor. Phys. 50, 1424-1443, 2011.
[44]  P. S. Baghel and J. P. Singh, Bianchi Type V Universe with Bulk Viscous Matter and TimeVarying Gravitational and Cosmological Constants. Research in Astronomy and Astrophysics. 12, 1457-1466, 2012.
[45]  Priyanka Kumari, M. K. Singh and Shri Ram, Anisotropic Bianchi Type-III Bulk Viscous Fluid Universe in Lyra Geometry. Adv. Math. Phys., 2013.
[46]  M. S. Berman, A Special Law of Variation for Hubble’s Parameter. IL Nuovo. Cim. B 74, 182-186, 1983.
[47]  M. S. Berman and F. M. Gomide, Cosmological Models with Constant Deceleration Parameter. Gen. Rel. Grav. 20, 191-198, 1988.
[48]  Shri Ram, M. K. Verma and M. Zeyauddin, Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation. Chinese Phys. Lett. 26, 089802-089805, 2009.
[49]  B. Saha and V. Rikhvitsky, Bianchi Type I Universe with Viscous Fluid and a Λ Term: A Qualitative Analysis. Physica D 219, 168-176, 2006.
[50]  B. Saha, Anisotropic Cosmological Models with a Perfect Fluid and a Λ Term. Astrophys. Space Sci. 302, 83-91, 2006.
[51]  Shri Ram, M. K.Verma and M. Zeyauddin, Homogeneous Anisotropic Cosmological Models With Viscous Fluid and Heat Flow in Lyra’s Geometry. Mod. Phys. Lett. 24, 1847-1856, 2009.
[52]  Shri Ram, M. Zeyauddin and C. P. Singh, Bianchi Type-V Cosmological Models with Perfect Fluid and Heat Conduction in Lyra’s Geometry. Int. J. Mod. Phys. A 23, 4991-5005, 2008.
[53]  R. G. Vishwakarma, Is the present expansion of the Universe really accelerating? Mon. Not. R. Astro. Soc. 345, 545-551, 2003.