International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2015, 3(4), 175-201
DOI: 10.12691/ijp-3-4-7
Open AccessArticle

Magnetism as an Electric Angle-effect and Gravitation as an Electric Effect

Hans-Joerg Hochecker1,

1Web-site: http://www.hochecker.eu

Pub. Date: July 21, 2015

Cite this paper:
Hans-Joerg Hochecker. Magnetism as an Electric Angle-effect and Gravitation as an Electric Effect. International Journal of Physics. 2015; 3(4):175-201. doi: 10.12691/ijp-3-4-7

Abstract

At first, I regard magnetism. I can show that the magnetic force is an electric angle-effect by establishing two postulates: the dependence of the electric force on the velocity, and the existence of the anti-field. With the help of a third postulate, this is the quantization of the energy-transfer of the electric field, I then show that gravitation is also an electric effect. So, the three postulates describe three qualities of the electric field by which magnetism and gravitation can be derived. I finally carry out quantum-mechanical considerations at which the three postulates will be excellently confirmed. For the correct classification of this work I must mention that the theory of special relativity is absolutely considered as being correct and that it is an important and necessary component of this work.

Keywords:
gravitation magnetism electric fields special relativity quantum-mechanics

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. Einstein, Zur Elektrodynamik bewegter Körper Annalen der Physik 17, 891-921 (1905).
 
[2]  PAM Dirac: The Quantum Theory of the Electron. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. A, Nr. 778, 1928, S. 610-624.
 
[3]  Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006.
 
[4]  James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Transactions 155, 1865, Seiten 459-512.
 
[5]  Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007.
 
[6]  Electromagnetism (2nd Edition), I.S. Grant, W.R. Phillips, Manchester Physics, John Wiley & Sons, 2008
 
[7]  Dirac, Paul (1996), General Theory of Relativity, Princeton University Press
 
[8]  Einstein, Albert (1916), "Die Grundlage der allgemeinen Relativitätstheorie", Annalen der Physik 49.
 
[9]  Hartle, James B. (2003), Gravity: an Introduction to Einstein's General Relativity, San Francisco: Addison-Wesley
 
[10]  M. Planck: Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. In: Verhandlungen der Deutschen physikalischen Gesellschaft. 2, Nr. 17, 1900, S. 245, Berlin (vorgetragen am 14. Dezember 1900).
 
[11]  Roger Bach, Damian Pope, Sy-Hwang Liou, Herman Batelaan Controlled double-slit electron diffraction In: New Journal of Physics, Roger Bach et al 2013 New J. Phys. 15 033018.
 
[12]  R. L. Jaffe: The Casimir Effect and the Quantum Vavuum. In: Physical Review D. Band 72, 2005 (online).
 
[13]  J. Baez. What´s the energy density of the vacuum?, 2006
 
[14]  M. Gell-Mann: A Schematic Model of Baryons and Mesons in Phys. Lett. 8, 1964, 214-215.
 
[15]  Moshe Carmeli, John G. Hartnett, Firmin J. Oliveira On the anomalous acceleration of Pioneer spacecraft Int.J.Theor.Phys. 45 (2006) 1074-1078.
 
[16]  Albert Einstein: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. In: Sitzungsberichte der Preußischen Akademie der Wissenschaften.
 
[17]  Chandrasekhar Roychoudhuri, Rajarshi Roy: The nature of light: What is a photon? In: Optics and Photonics News. 14, Nr. 10, 2003, ISSN 1047-6938, Supplement, S. 49-82.
 
[18]  Harry Paul: Photonen: Eine Einführung in die Quantenoptik. 2. Auflage. Teubner, Stuttgart 1999, ISBN 3-519-13222-2. (Teubner-Studienbücher Physik).
 
[19]  Klaus Hentschel: Einstein und die Lichtquantenhypothese. In: Naturwissenschaftliche Rundschau. 58(6), 2005, ISSN 0028-1050, S. 311-319.
 
[20]  Liang-Cheng Tu, Jun Luo, George T. Gillies: The mass of the photon. In: Reports on Progress in Physics. 68, Nr. 1, 2005, S. 77-130.
 
[21]  J D Franson Apparent correction to the speed of light in a gravitational potential In: New Journal of Physics, J D Franson 2014 New J. Phys. 16 065008.
 
[22]  Berestetskii V B, Lifshitz E M and Pitaevskii L P 1980 Quantum Electrodynamics (Oxford: Pergamon).
 
[23]  H. Grote: On the possibility of vacuum QED measurements with gravitational wave detectors In: Phys. Rev. D 91, 0220022-7 January 2015.
 
[24]  Max Born, Albert Einstein: Albert Einstein, Max Born. Briefwechsel 1916-1955. München (Nymphenburger) 1955, S. 210.
 
[25]  Simon Gröblacher, Tomasz Paterek, Rainer Kaltenbaek, Caslav Brukner, Marek Zukowski, Markus Aspelmeyer, Anton Zeilinger: An experimental test of non-local realism. In: Nature. 446, 2007, S. 871-875. (Abstract).
 
[26]  Jacob Biemond The MagneticFfield of Pulsars and the Gravito-Magnetic Theory Trends in Pulsar Research (Ed. Lowry, J. A.), Nova Science Publishers, New York, Chapter 2 (2007).
 
[27]  Shervgi S. Shahverdiyev Unification of Electromagnetism and Gravitation in the Framework of General Geometry Proceedings of the workshop in "Fizika" N 12, 2004.
 
[28]  Friedrich W. Hehl An Assesment of Evans´Uunified Field Theory Foundations of Physics 38 (2008) 7-37.
 
[29]  Bahram Mashhoon, Frank Gronwald and Herbert I.M. Lichtenegger Gravitomagnetism and the Clock Effect Lect.Notes Phys. 562 (2001) 83-108.
 
[30]  Sumana Bhadra Electromagnetic Mass Models in General Theory of Relativity Ph.D. thesis, Sambalpur University, Jyoti Vihar, Burla – 768019, Orissa, India (2007).
 
[31]  J.H. Field Forces Between Electric Charges in Motion: Rutherford Scattering, Circular Keplerian Orbits, Action-at-a-Distance and Newton’s Third Law in Relativistic Classical Electrodynamics arXiv:physics/0507150v3 (2007)
 
[32]  J.H.Field Classical Electromagnetism as a Consequence of Coulomb's Law, Special Relativity and Hamilton's Principle and its Relationship to Quantum Electrodynamics Phys.Scripta 74 (2006) 702-717.
 
[33]  M. Tajmar and C. J. de Matos Extended Analysis of Gravitomagnetic Fields in Rotating Superconductors and Superfluids ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France.
 
[34]  M. Tajmar, F. Plesecu, B. Seifert and K. Marhold Measurement of Gravitomagnetic and Acceleration Fields Around Rotating Superconducters AIP Conf. Proc. 880, 1071 (2007).
 
[35]  Martin Tajmar, Florin Plesescu, Klaus Marhold and Clovis J. Matos Experimental Detection of the Gravitomagnetic London Moment Space Propulsion, ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France (2006).
 
[36]  V.V. Roschin and S. M. Godin Experimental Research of the Magnetic-Gravity Effects Institute for High Temperatures, Russian Academy of Science
 
[37]  H.-J. Hochecker Theory of Objects of space At: http://www,hochecker.eu.