International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2015, 3(3), 133-138
DOI: 10.12691/ijp-3-3-7
Open AccessArticle

Approach for Selection of a Synthesis Procedure of GeO2 Ultra-small Nano Particles and Its Characterization

Mrinal Seal1 and Sampad Mukherjee1,

1Department of physics, Indian Institute of Engineering Science and Technology, Howrah, India

Pub. Date: May 04, 2015

Cite this paper:
Mrinal Seal and Sampad Mukherjee. Approach for Selection of a Synthesis Procedure of GeO2 Ultra-small Nano Particles and Its Characterization. International Journal of Physics. 2015; 3(3):133-138. doi: 10.12691/ijp-3-3-7


A rigorous study of germanium oxide nano-particle synthesis is done by hydrothermal method. An optimum synthesis condition to obtain the stable and ultra-small size as of 10 nm of the material is determined by characterizing the prepared samples with X-Ray diffraction pattern analysis and TEM. The sample with smallest particle size is also characterized with HRTEM, PL and FTIR spectroscopy. The characterization results are analyzed accordingly. The most remarkable feature of the ultra small sized sample as observed is the current-voltage characteristic, which has been explained with oxygen vacancy phenomenon.

hydrothermal synthesis nanostructures crystal growth oxides strain

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 11


[1]  Yankov G, Dimowa L, Petrova N, Tarassov M, Dimitrova K, Petrova T, Shivachev B L, “Synthesis, structural and non linear properties of TeO2-GeO2-LiO2 Glasses”, Opt. Mater., 35(2). 248-251. Dec 2012.
[2]  Hermet P, Fraysse G, Lignie A, Armand P, Papet P, “Density functional theory predictions of the nonlinear optical properties in α-quartz Germanium oxide”, J. Phys. Chem. C, 116. 8692-8698. Mar 2012.
[3]  Itiẻ J P, Polian A, Calas G, Petiau J, Fontaine A, Tolentino H, “Pressure induced coordination changes in crystalline and vitreous GeO2”, Phys. Rev. Lett., 63. 398-401. July1989.
[4]  Pei L Z, Zhao H S, Tan W, Yu H Y, Chen Y W, Fan C G, Zhang Q F, “Smoot Germanium nanowires prepared by a hydrothermal deposition process”, Mater. Charact., 60(11). 1400-1405. Nov 2009.
[5]  Chang T C, Yan S T, Chsu C H, Tang M T, Lee J F, Tai Y H, Liu P T, Sze S M, “A distributed charge storage with GeO2 nanodots”, Appl. Phys. Lett., 84 (14) 2581-2583. April 2004.
[6]  Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S, “Memristive switching mechanism for metal/oxide/metal nanodevices”, Nature Nanotech., 3 429-433. June 2008.
[7]  Fors R, Khartsev S I, Grishin A M, “Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition”, Phys. Rev. B, 71. 045305-045314. 2005.
[8]  Sawa A, Fujii T, Kawasaki M, Tokura Y, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Appl.Phys.Lett., 85. 4073-4075. Nov 2004.
[9]  Fujii T, Kawasaki M, Sawa A, Akoh H, Kawazoe Y, Tokura Y, “Hysteretic current-voltage characteristic and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3”, Appl. Phys. Lett., 86. 012107-1-3. 2005.
[10]  Rozenberg M J, Inoue I H, Sanchez M J, “Nonvolatile memory with multilevel switching: A Basic Model”, Phys. Rev. Lett., 92. 178302-1-4. 2004.
[11]  Jooss C, Wu L B, Etz T, Klie R F, Beleggia M, Schofield M A, Schramm S, Hoffmann J, Zhu Y P, “Polaron melting and ordering as key mechanism for colossal resistance effects in manganites” in Proceedings of the Natl. Acad. Sci. U.S.A., 13597-13602.
[12]  Baikalov A, Wang Y Q, Shen B, Tsui S, Sun Y Y, Xue Y Y, Chu C W, “Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface ”, Appl. Phys. Lett., 83. 957-959. 2003.
[13]  Nian Y B, Strozier J, Wu N J, Chen X, Ignatiev A, “Evidence for an Oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxide”, Phys. Rev. Lett., 98. 146403-1-4. 2007.
[14]  Gao P, Wang Z, Fu W, Liao Z, Liu K, Wang W, Bai X, Wang E, “In situ TEM studies of Oxygen vacancy migration for electrically induced resistance change effect in Cerium Oxide”, Micron, 41(4). 301-305. June 2010.
[15]  Giberti A, Malagu C, “Current–voltage characteristics of nanostructured SnO2 films”, Thin Solid Films, 548. 683-688. Dec 2013.
[16]  Peng Z, Chen Y, Chen Q, Li N, Zhao X, Kou C, Xiao D, Zhu J, “Correlation between lattice distortion and electrical properties on Bi4Ti3O12 ceramics with W/Ni modifications”, J. Alloys Compd., 590. 210-214. March 2014.
[17]  Shaposhnikov A V, Perevalov T V, Gritsenko V A, Cheng C H, Chin A, “Mechanism of GeO2 resistive switching based on the multi-phonon assisted tunneling between traps”, Appl. Phys. Lett., 100. 243506-1-4. 2012.
[18]  Ekstrom T, Chatfield C, Wruss W, Schreiber M M, “The use of X-ray diffraction peak-broadening analysis to characterize ground Al2O3 powders ”, J. Mat. Sc., 20. 1266-1274. 1985.
[19]  Dey S N, Chatterjee P, Sengupta S P, “Dislocation induced line-broadening in cold-worked Pb-Bi binary alloy system in the α-phase using X-ray powder profile analysis ”, Acta. Mater., 51 (16). 4669-4677. Sept 2003.
[20]  Bose N, Basu M & Mukherjee S, “Study of optical properties of GeO2 nanaocrystals as synthesized by hydrothermal technique”, Mater. Res. Bull., 47 (6) 1368-1373. June 2012.
[21]  Kim H W, Lee J W, Kebede M A, Kim H S, Lee C, “Catalyst-free synthesis of GeO2 nanowires using the thermal heating of Ge powders”, Curr. Appl. Phys., 9 (6). 1300-1303. Nov 2009.
[22]  Ramana C V, Franco G C, Vemuria R S, Troitskaiac I B, Gromilovd S A, Atuchin V V, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure” Mater. Sci. Eng. B, 174 (1-3). 279-284. Oct 2010.
[23]  Kim H W, Lee J W, “GeO2 nanostructures fabricated by heating of Ge powders: Pt-catalyzed growth, structure, and photoluminescence”, Physica E, 40 (7). 2499-2503. May 2008.
[24]  Wu X C, Song W H, Sun Y P, Du J J, “Preparation and photoluminescence properties of crystalline GeO2 nanowires”, Chem. Phys. Lett., 349 (3-4). 210-214. Nov 2001.
[25]  Vassileva M S, Tzenov N, Malinovs D D, Rosenbauer M, Stutzmann M, Josepovits K V, “Structural and luminescence studies of stain-etched and electrochemically etched germanium”, Thin Solid Films, 255 (1-2). 282-285. Jan 1995.
[26]  Lucovsky G, Chao S S, Yang J, Tyler J E, Czubatyj W, “Differences between the bonding of oxygen in glow discharge deposited a-Si:H and a-Ge:H”, J.Non-Cryst. Solids, 66 (1-2). 99-104. July 1984.
[27]  Gross T M, Tomozawa M, “Fictive temperature of GeO2 glass: Its determination by IR method and its effects on density and refractive index”, J.Non-Cryst. Solids, 353 (52-54). 4762-4766. Dec 2007.
[28]  Viswanathmurthi P, Bhattaraj N, Kim H Y, Khil M S, Lee D R, Suh E K, “GeO2 fibers: Preparation, morphology and photoluminescence property”, J. Chem. Phys., 121. 441-445. 2004.
[29]  Clauws P, “Oxygen related defects in germanium”, Mat. Sc. Engg. B, 36 (1-3). 213-220. Jan 1996.
[30]  Waser R, Dittmann R, Staikov G, Szot K, “Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater., 21 (25-26). 2632-2663. July 2009.
[31]  Chen J, Yang D, Li H, Ma X, Tian D, Li L, Que D, “Crystal-originated particles in germanium-doped Czochralski silicon crystal”, J. Cryst. Growth, 306 (2) 262-268. Aug 2007.