International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2015, 3(2), 88-95
DOI: 10.12691/ijp-3-2-7
Open AccessArticle

Gapless Superconductivity

Boris V. Bondarev1,

1Moscow Aviation Institute, VolokolamskoeShosse, 4, 125871, Moscow, Russia

Pub. Date: February 25, 2015

Cite this paper:
Boris V. Bondarev. Gapless Superconductivity. International Journal of Physics. 2015; 3(2):88-95. doi: 10.12691/ijp-3-2-7


The mean field method is applied for analysis of valence electrons in metals. It is shown that at low temperatures electrons have two wave-vector distribution patterns. Isotropic distribution refers to the first pattern. Anisotropic distribution refers to another pattern, particularly to specific wave vector values occurred nearby the Fermi sphere. It is shown that it is the anisotropy that makes the metal obtain its specific superconductor features.

valence electrons mean field method Fermi-Dirac function isotropic and anisotropic distributions superconductivity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  H.Kamerlingh-Onnes, “Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, ets. IV. The resistance of pure mercury at helium temteratures”. Comm. Phys. Leb. Univ. Leiden, (120b). 13-18. 1911.
[2]  V.L. Ginzburg, L.D. Landau, “To the theory of superconductivity”. JETF, 20, 1064-1071. 1950.
[3]  J. Bardeen, L.N. Cooper, J.R. Schrieffer, “Theory of superconductivity”. Phys. Rev., 108. 1175-1204.1957.
[4]  J.R. Schiffer, Superconductivity Theory, (Nauka, Moscow, 1970).
[5]  V.I.Bielawski,Y.V. Kopaev, “Superconductivity of repulsive particles”. UFN, 176, 457-485, 2006.
[6]  M.V. Sadowski, “High-temperature superconductivity in layerediron compounds”. UFN, 178, 1243-1271, 2008.
[7]  B.V. Bondarev, “Quantum lattice gas. Method of density matrix”, Physica A, 184.205-230.1992.
[8]  B.V.Bondarev, “On some peculiarities of the electron distribution function Bloch states”, Vestnik MAI, 3 (2). 56-65.1 996.
[9]  B.V. Bondarev, Density Matrix Method in Quantum Cooperative Process Theory, (Sputnik+, Moscow, 2013).
[10]  B.V. Bondarev, Density Matrix Method in Quantum Theory of Superconductivity, (Sputnik+, Moscow, 2014).
[11]  B.V. Bondarev, New Theory of Superconductivity. Method of Equilibrium Density Matrix. arXiv: 1412. 6008 22 Sep 2013.
[12]  D.I. Blokhintsev, Principles of Quantum Mechanics, (Higher School, Moscow, 1961).
[13]  Yu.I. Sirotin, M.P. Shaskolskaya, Basic Crystallophysics, (Nauka, Moscow, 1979).