International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2015, 3(2), 45-51
DOI: 10.12691/ijp-3-2-1
Open AccessArticle

Properties of Optical Soliton in a Three Level Medium with Quintic Nonlinearity

Preeti Agarwal1, , A. Ray1 and A. Roy Chowdhury1

1High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta – 700032, India

Pub. Date: January 28, 2015

Cite this paper:
Preeti Agarwal, A. Ray and A. Roy Chowdhury. Properties of Optical Soliton in a Three Level Medium with Quintic Nonlinearity. International Journal of Physics. 2015; 3(2):45-51. doi: 10.12691/ijp-3-2-1

Abstract

Propagation characteristics of optical soliton in a three level atomic medium are analyzed by treating the material medium quantum mechanically, but the electromagnetic wave classically. Both the cubic and quintic components of the nonlinear polarization of the electromagnetic field are considered along with those generated dueto the dipole formation of the material. A numerical simulation is carried out with the help of split-step technique. It is observed that the power of the pulse, distance of propagation and degree of dispersion are intimately related. The role of polarization due to the material is duely compensated by keeping higher order dispersive terms. In this connection we have seen that keeping the higher order dispersive terms, up to the eighth order, which is actually the phenomenon of continuum generation, results in a better form of the pulse. In our paper, we have analyzed the effects in both the cases, that is, including and excluding the quintic terms and in each case we have considered the effects of second-order dispersion (β2) as well as the higher order dispersion terms .

Keywords:
three level atomic system Self Induced Transparency-Non Linear Schrödinger soliton split-step technique continuum generation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 16

References:

[1]  G. P. Agarwal, Nonlinear Fiber Optics, 2nd Ed., New York Academic Press, 1995.
 
[2]  J. S. Russell, “Report on waves”. Fourteenth meeting of the British Association for the Advancement of Science, 1844.
 
[3]  A. Hasegawa and F. Tappert, Appl. Phys. Lett., 23 (3) 1973 142.
 
[4]  A. Hasegawa and F. Tappert, Appl. Phys. Lett., 23 (4) 1973 171.
 
[5]  L.F. Mollenauer, R.H. Stolen, and J.P. Gordon, Phys. Rev. Letters, 45 (13) (1980) 1095.
 
[6]  S. L. McCall and E. L. Hahn, Physical Review Lett., 183 (2) (1969) 457.
 
[7]  T. N. Dey, S. D. Gupta and G. S. Agarwal, Optics Express, 16 (22) (2008) 17441.
 
[8]  N. P. Bigelow, J. H. Eberly and C. R. Stroud Jr., Coherence and Quantum Optics VIII, 2003.
 
[9]  J. H. Eberly, Quantum Semiclass. Opt., 7 (1995) 373.
 
[10]  A. I. Maimistov and E. A. Manykin, Zh. Eksp. Teor. Fiz., 85, (1983) 1177.
 
[11]  I. V. Mel'nikov, R. F. Nabiev and A. V. Nazarkin, Opt. Lett., 15 (1990) 1348.
 
[12]  S. B. Cavalcanti, E. J. S. Fonseca, D. P. Caetano and J. M. Hickmann, An. Acad. Bras. Cienc., 73 (2001) 197.
 
[13]  E. J. S. Fonseca, S. B. Cavalcanti and J. M. Hickmann, Annals of Optics-XXV ENFMC, (2002) 81.
 
[14]  A. I. Maimistov and E. A. Manykin, Zh. Eksp. Teor. Fiz., 85, (1983) 685.
 
[15]  M. Nakazawa, E. Yamada and H. Kubota, Phys. Rev. Lett., 66 (1991) 2625.
 
[16]  O. V. Sinkin, R. Holzlöhner, J. Zweck and C. R. Menyuk, Journal of Lightwave Technology, 21 (2003) 61.
 
[17]  S. Balac and F. Mah´e, Journal of Computational Physics, 280 (2015) 295.
 
[18]  B. Mandal and A. R. Chowdhury, Chaos, Solitons and Fractals, 24 (2005) 557.