International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2015, 3(1), 40-44
DOI: 10.12691/ijp-3-1-7
Open AccessArticle

Apparent Superluminal Speeds in Evanescent Fields, Quantum Tunnelling and Quantum Entanglement

Arne Bergstrom1,

1B&E Scientific Ltd, Seaford BN25 4PA, United Kingdom

Pub. Date: January 27, 2015

Cite this paper:
Arne Bergstrom. Apparent Superluminal Speeds in Evanescent Fields, Quantum Tunnelling and Quantum Entanglement. International Journal of Physics. 2015; 3(1):40-44. doi: 10.12691/ijp-3-1-7

Abstract

Three cases of wave propagation involving possible superluminal speeds are discussed. The picture that emerges is that the actual propagation velocity of the wave front never exceeds the speed of light in vacuum. However, once the wave front has reached some distant point in space, then propagation may actually seem to take place along this wave with superluminal speed, yet involving no conflict with special relativity. Quantum entanglement – Einstein’s “spooky action at a distance” – is one famous, and now experimentally verified example of propagation at such apparent superluminal speed, but which is here explained within the framework of special relativity. This then at the same time also leads to a deeper understanding of the limitation of the recently proposed clock-hypothesis in special relativity, and also provides an illustration of the mechanism involved in wave-particle duality.

Keywords:
superluminal group velocities special relativity valid limited validity of clock hypothesis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. Aspect, P. Grangier, and G. Roger, Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: A New Violation of Bell's Inequalities”, Phys. Rev. Lett., 49, 91–94 (1982)
 
[2]  J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, 1987) pp. 142, 144.
 
[3]  A. Bergstrom, “Optoelectronic circuit element”, US Patent 4,254,333 (1981).
 
[4]  A. Bergstrom, C. Dahlstrom, “Sensor-Taste nach optischen Prinzip”, Elektronik Industrie 12, 70-71 (1984).
 
[5]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145-160 (1975).
 
[6]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[7]  A. Bergstrom, “Big Crunch, Big Rip – or a self-similar expansion replenished by dark matter and dark energy?”, Int. Journal of Physics 2, 146-150 (2014).
 
[8]  J. L. Borges, Kafka and his precursors, in Labyriths (Penguin, 2000), p 234.
 
[9]  A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunnelling time”, Phys. Rev. Lett. 71, 708 (1993).
 
[10]  A. P. L. Barbero, H. E. Hernández-Figueroa, E. Recami, “Propagation speed of evanescent modes”, Phys. Rev. E 62, 8628-8635 (2000).
 
[11]  R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, “Faster than light?”, Scientific American, Aug 1993, 52-60.
 
[12]  M. Arndt, O. Nairz, J. Vos-Andreae, et al., “Wave–particle duality of C60 molecules”, Nature 401, 680-682 (1999).
 
[13]  K. C. Lee, M. R. Sprague, B. J. Sussman, et al., “Entangling macroscopic diamonds at room temperature”, Science 334 1253-1256 (2011).
 
[14]  H. Zbinden, J. Brendel, N. Gisin, W. Tittel, “Experimental test of nonlocal quantum correlations in relativistic configurations”, Phys. Rev. A 63, 22111 (2001).
 
[15]  S. R. Mainwaring, G. E. Stedman, “Accelerated clock principles in special relativity”, Phys. Rev. A 47, 3611-3619 (1993).
 
[16]  G. Barton, Introduction to the relativity principle (Wiley, 1999), Ch 8.
 
[17]  A. Bergstrom, “Can time in special relativity appear frozen despite the clock hypothesis says it cannot?”, Int. Journal of Physics 1, 146-150 (2013).
 
[18]  X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, Č. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping”, Nature Physics 8, 480-485 (2012).
 
[19]  E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted”, Phys. Rev. Lett. 110, 210403 (2013).