International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2014, 2(6), 277-281
DOI: 10.12691/ijp-2-6-11
Open AccessArticle

Cubic Atom and Crystal Structures

Zhiliang Cao1, 2, and Henry Gu Cao3

1Wayne State University, 42 W Warren Ave, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Northwestern University, 633 Clark St, Evanston, IL 60208

Pub. Date: December 15, 2014

Cite this paper:
Zhiliang Cao and Henry Gu Cao. Cubic Atom and Crystal Structures. International Journal of Physics. 2014; 2(6):277-281. doi: 10.12691/ijp-2-6-11

Abstract

The paper "Unified field theory" (UFT) unified four fundamental forces with help of the Torque model. UFT gives a new definition of Physics: “A natural science that involves the study of motion of space-time-energy-force to explain and predict the motion, interaction and configuration of matter.” One of important pieces of matter is the atom. Unfortunately, the configuration of an atom cannot be visually observed. Two of the important accepted theories are the Pauli Exclusion Principle and the Schrodinger equations. In these two theories, the electron configuration is studied. Contrary to the top down approach, UFT theory starts from structure of Proton and Neutron using bottom up approach instead. Interestingly, electron orbits, electron binding energy, Madelung Rules, Zeeman splitting and crystal structure of the metals, are associated with proton’s octahedron shape and three nuclear structural axes. An element will be chemically stable if the outmost s and p orbits have eight electrons which make atom a symmetrical cubic. Most importantly, the predictions of atomic configurations in this paper can be validated by characteristics of chemical elements which make the UFT claims credible. UFT comes a long way from space-time-energy-force to the atom. The conclusions of UFT are more precise and clearer than the existing theories that have no proper explanation regarding many rules, such as eight outer electrons make element chemically stable and the exception on Madelung's rules. Regardless of the imperfections of the existing atomic theories, many particle Physics theories have no choice but to build on top of atomic theories, mainly Pauli Exclusion Principle and Schrodinger equations. Physics starts to look for answer via ambiguous mathematical equations as the proper clues are missing. Physics issues are different from mathematical issues, as they are Physical. Pauli Exclusion works well in electron configuration under specific physical condition and it is not a general Physics principal. Schrodinger’s mathematical equations are interpreted differently in UFT. UFT is more physical as it built itself mainly on concept of Space, Time, Energy and Force, in the other word, UFT is Physics itself. Theory of Everything (ToE), the final theory of the Physics, can be simply another name for UFT. This paper connects an additional dot to draw UFT closer to ToE.

Keywords:
nuclear physics particle physics unified field theory gold crystal

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
 
[2]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and Topology of Nuclei.” International Journal of Physics 2, no. 1 (2014): 15-22.
 
[3]  Zhiliang Cao, Henry Gu Cao, Wenan Qiang, Unified Field Theory and Topology of Atom, American Journal of Modern Physics. Vol. 4, No. 4, 2015, pp. 1-7.
 
[4]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
 
[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170.
 
[6]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
 
[7]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[8]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[9]  Mehul Malik, Mohammad Mirhosseini, Martin P. J. Lavery, Jonathan Leach, Miles J. Padgett & + et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5.
 
[10]  H. T. Yuan, M. B. Saeed, K. Morimoto, H. Shimotani, K. Nomura, R. Arita, Ch. Kloc, N. Nagaosa, Y. Tokura, and Y. Iwasa. Zeeman-Type Spin Splitting Controlled with an External Electric Field. Nat. Phys. 2013, 9, 563-569.
 
[11]  A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel. “Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field.” Phys. Rev. B 84, 165325-2011, October.
 
[12]  D. Kekez, A. Ljubiic & B. A. Logan. An upper limit to violations of the Pauli exclusion principle. Nature 348, 224-224 (1990).
 
[13]  Zoran Hadzibabic. Quantum gases: The cold reality of exclusion. Nature Physics 6, 643-644 (2010).
 
[14]  June Kinoshita. Roll Over, Wolfgang? Scientific American 258, 25-28 (1988).
 
[15]  Tony Sudbery. Exclusion principle still intact. Nature 348, 193-194 (1990).
 
[16]  R. C. Liu, B. Odom, Y. Yamamoto & S. Tarucha. Quantum interference in electron collision. Nature 391, 263-265 (1998).
 
[17]  George Gamow. The Exclusion Principle. Scientific American 201, 74-86 (1959).
 
[18]  B. Poirier, Chem. Phys. 370, 4 (2010).
 
[19]  A. Bouda, Int. J. Mod. Phys. A 18, 3347 (2003).
 
[20]  P. Holland, Ann. Phys. 315, 505 (2005).
 
[21]  P. Holland, Proc. R. Soc. London, Ser. A 461, 3659 (2005).
 
[22]  G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, “Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities,” Comput. Theor. Chem. (in press).
 
[23]  D. Babyuk and R. E. Wyatt, J. Chem. Phys. 124, 214109 (2006).
 
[24]  Jeremy Schiff and Bill Poirier. Quantum mechanics without wavefunctions. THE JOURNAL OF CHEMICAL PHYSICS 136, 031102 (2012).
 
[25]  J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1932).
 
[26]  D. Bohm, Phys. Rev. 85, 166 (1952).
 
[27]  P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993).
 
[28]  R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005).
 
[29]  H. Everett III, Rev. Mod. Phys. 29, 454 (1957).
 
[30]  M. F. González, X. Giménez, J. González, and J. M. Bofill, J. Math. Chem. 43, 350 (2008).
 
[31]  Oganessian, Yu. T. et al. (2002). Results from the first 249Cf+48Ca experiment. JINR Communication (JINR, Dubna). http://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf.
 
[32]  Nash, Clinton S. (2005). “Atomic and Molecular Properties of Elements 112, 114, and 118”. Journal of Physical Chemistry A 109 (15): 3493-3500.
 
[33]  K.Umemoto, S.Saito, Electronic configurations of superheavy elements, Journal of the physical society of Japan, vol.65, no.10, 1996, p.3175-3179.
 
[34]  Hartmut M. Pilkuhn, Relativistic Quantum Mechanics, Springer Verlag, 2003.
 
[35]  E.Loza, V.Vaschenko. Madelung rule violation statistics and superheavy elements electron shell prediction. http://arxiv-web3.library.cornell.edu/abs/1206.4488
 
[36]  Froese Fischer, Charlotte (1987). “General Hartree-Fock program”. Computer Physics Communication 43 (3): 355-365.
 
[37]  Abdulsattar, Mudar A. (2012). “SiGe superlattice nanocrystal infrared and Raman spectra: A density functional theory study”. J. Appl. Phys. 111 (4): 044306.
 
[38]  Hinchliffe, Alan (2000). Modelling Molecular Structures (2nd ed.). Baffins Lane, Chichester, West Sussex PO19 1UD, England: John Wiley & Sons Ltd. p. 186.
 
[39]  Szabo, A.; Ostlund, N. S. (1996). Modern Quantum Chemistry. Mineola, New York: Dover Publishing.
 
[40]  Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 403.
 
[41]  Christophe L. Guillaume, Eugene Gregoryanz, Olga Degtyareva, Malcolm I. McMahon, Michael Hanfland, Shaun Evans, Malcolm Guthrie, Stanislav V. Sinogeikin & H-K. Mao. Cold melting and solid structures of dense lithium. Nature Physics 7, 211-214 (2011).
 
[42]  Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141-144 (1999).
 
[43]  Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174-178 (2000).
 
[44]  Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20?K. Nature 419, 597-599 (2002).
 
[45]  Tamblyn, I., Raty, J. & Bonev, S. Tetrahedral clustering in molten lithium under pressure. Phys. Rev. Lett. 101, 075703 (2008).
 
[46]  Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186-189 (2009).
 
[47]  Lazicki, A., Fei, Y. & Hemley, R. High pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Commun. 150, 625-627 (2010).
 
[48]  Hernández, E., Rodriguez-Prieto, A., Bergara, A. & Alfè, D. First-principles simulations of lithium melting: Stability of the bcc phase close to melting. Phys. Rev. Lett. 104, 185701 (2010).
 
[49]  Datchi, F., Loubeyre, P. & LeToullec, R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys. Rev. B 61, 6535-6546 (2000).
 
[50]  Gregoryanz, E., Goncharov, A. F., Matsuishi, K., Mao, H. K & Hemley, R. J. Raman spectroscopy of hot dense hydrogen. Phys. Rev. Lett. 90, 175701 (2003).
 
[51]  Börje Johansson, Wei Luo,Sa Li & Rajeev Ahuja. Cerium; Crystal Structure and Position in The Periodic Table. Scientific Reports 4, Article number: 6398.
 
[52]  Koskenmaki, D. C. & Gschneidner, K. A., Jr Cerium in: Handbook on the physics and chemistry of rare earths, Vol. 1, eds Gschneidner K. A., & Eyring L. (Amsterdam, North-Holland), pp 337-377 (1978).
 
[53]  Johansson, B. The a-? transition in cerium is a Mott transition. Philos. Mag. 30, 469-482 (1974).
 
[54]  Gustafson, D. R., McNutt, J. D. & Roellig, L. O. Positron annihilation in ?- and a-cerium. Phys. Rev. 183, 435-440 (1969).
 
[55]  Kornstädt, U., Lässer, R. & Lengeler, B. Investigation of the?-a phase transition in cerium by Compton scattering. Phys. Rev. B 21, 1898-1901 (1980).
 
[56]  Rueff, J. P. et al. F-state occupancy at the ?-a phase transition of Ce-Th and Ce-Sc alloys. Phys. Rev. Lett. 93, 067402 (2004).
 
[57]  Loa, I., Isaev, E. I., McMahon, M. I., Kim, D. Y. & Johansson, B. Lattice dynamics and superconductivity in cerium at high pressure. Phys. Rev. Lett. 108, 045502 (2012).
 
[58]  Lashley, J. C. et al. Tricritical phenomena at the? right arrow a transition in Ce0.9-xLaxTh0.1 alloys. Phys. Rev. Lett. 97, 235701 (2006).
 
[59]  Allen, J. W. & Martin, R. M. Kondo volume collapse and the ? right arrow a transition in Cerium. Phys. Rev. Lett. 49, 1106-1110 (1982).
 
[60]  Szotek, Z., Temmerman, W. M. & Winter, H. Self-interaction corrected, local spin density description of the? right arrow a transition in Ce. Phys. Rev. Lett. 72, 1244-1247 (1994).
 
[61]  Peng Tan, Ning Xu & Lei Xu. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Physics 10, 73-79 (2014).
 
[62]  Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22, 289-330 (1897).
 
[63]  Alexander, S. & McTague, J. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702-705 (1978).
 
[64]  Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714-2717 (1995).
 
[65]  Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932-9947 (1996).
 
[66]  Shen, Y. C. & Oxtoby, D. W. bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory. Phys. Rev. Lett. 77, 3585-3588 (1996).
 
[67]  Auer, S. & Frenkel, D. Crystallization of weakly charged colloidal spheres: A numerical study. J. Phys. Condens. Matter 14, 7667-7680 (2002).
 
[68]  Moroni, D., ten Wolde, P. R. & Bolhuis, P. G. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005).
 
[69]  Russo, J. & Tanaka, H. Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model. Soft Matter 8, 4206-4215 (2012).
 
[70]  Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340-342 (1986).