International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2014, 2(5), 129-145
DOI: 10.12691/ijp-2-5-2
Open AccessReview Article

To Principles of Quantum Mechanics Development

Dmitri Yerchuck1, , Alla Dovlatova2, Felix Borovik1, Yauhen Yerchak3 and Vyacheslav Stelmakh3

1Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk, 220072

2M.V.Lomonosov Moscow State University, Moscow, 119899, RF

3Belarusian State University, Nezavisimosti Ave., 4, Minsk, 220030, RB

Pub. Date: September 08, 2014

Cite this paper:
Dmitri Yerchuck, Alla Dovlatova, Felix Borovik, Yauhen Yerchak and Vyacheslav Stelmakh. To Principles of Quantum Mechanics Development. International Journal of Physics. 2014; 2(5):129-145. doi: 10.12691/ijp-2-5-2

Abstract

New insight on the principles of the quantum physics development is given. The quite different behavior of quantum microworld mechanical systems in comparison with classical mechanical macroworld systems is attributed to the drastical change of the role of the gravitation field on the dynamics of microworld mechanical systems, for which it seems to be vanishing in com- parison with the role of the gravitation field on the dynamics of macroworld mechanical systems, for which it is decisive. The conclusion on the status of the second main postulate of quantum mechanics is given. Its formulation in all textbooks has to be represented in the form of the proved statement, since the hypothesis of Schrödinger on the existence of the field scalar function, being to be observable quantity, just charge density, is strictly mathematically proved. It is shown, that the field scalar function, being to be the solution of the corresponding nonstationary in general case Schrödinger equation and being to be the function the only of coordinates and time, actually describes the state of the atomic system, more strictly its corpuscular aspect. The atomic system is considered from the positions of the field theory, that is, it is the association of elementary particles with corresponding fields. The given fields being to be the media for the particles’ propagation are responsible for the wave aspect in the characteristic of atomic systems. The wave aspect is described by the independent scalar wave-function which was also introduced in quantum physics by Schrödinger, althogh the given fact seems to be unknown to the wide circle of the readers. The second main postulate being to be mathematically strictly grounded in Schrödinger formulation of quantum nechanics, in the popular probabilistic form of quantum nechanics cannot be proved for the general case, although the probabilistic theatise, proposed by Born is true in a number of special cases, quite correctly indicated by Dirac. The possible ways of the development of quantum theory, based on clear understanding of the origin of corpuscular-wave dualism and based on the fundamental both now mathemtically grounded main postulates are analysed.

Keywords:
corpuscular-wave dualism Schrödinger equations quantum theory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Landau L.D, Lifshitz E.M, Quantum Mechanics, Moscow, Nauka, 1989, 768 pp.
 
[2]  Kramers H A, Quantum Mechanics, North-Holland, Amsterdam, 1958
 
[3]  Bohm A, Quantum Mechanics: Foundations and Applications, Springer-Verlag, N.-Y., Berlin, Heidelberg, Tokyo, 1986, M., Mir, 1990, 720 pp.
 
[4]  Davydov A.S, Quantum Mechanics, Moscow, Nauka, 1973, 703 pp.
 
[5]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, Symmetry of Differential Equations and Quantum Theory, 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490.
 
[6]  R.Feynman, R.Leyton, M.Sands, Feynman Lections on Physics, V.8, Quantum Mechanics (I), M., 1966, 269 pp.
 
[7]  E.Vichman, Berklee Course of Physics, V.4, Quantum Physics, p.263, M., 391 pp.
 
[8]  Dmitry Yearchuck, Yauhen Yerchak, Alla Dovlatova, Quantum-mechanical and Quantum-electrodynamic Equations for Spectroscopic Transitions, Optics Communications, 2010; 283: 3448-3458.
 
[9]  Yearchuck D, Yerchak Y, Red'kov V, Quantum Mechanical Analogue of Landau{Lifshitz Equation, Doklady NANB, 2007; 51 (N 5): 57-64.
 
[10]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Erste Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 361.
 
[11]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Zweite Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 489.
 
[12]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Dritte Mitteilung), Annalen der Physik (Fierte Folge), 80 (1926) 437-490.
 
[13]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Vierte Mitteilung), Annalen der Physik (Fierte Folge), 81 (1926) 109-139.
 
[14]  SchrÄodinger E, Die Naturwissenschaften, 14 (1926) 664.
 
[15]  SchrÄodinger E, ÄUber das VerhÄaltnis der Heisenberg-Born-Jordanschen Quantenmechanick zu der meinen, Annalender Physik (Fierte Folge), 79 (1926) 734-756.
 
[16]  SchrÄodinger E, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, 28, N 6 (1926) 1049-1070.
 
[17]  A.Dovlatova and D.Yerchuck, Concept of Fully Dually Symmetric Electrodynamics, 7th International Conference on Quantum Theory and Symmetries (QTS7), J.Physics: Conference Series, 343 (2012) 012133, 23 pp.
 
[18]  Dirac P.A.M, Quelques Problemes de Mecanique Quantique, Ann.Inst. Henri Poincare, 1931, T.1, fase 4, pp 357-400.
 
[19]  Rainich G Y, Electrodynamics in the General Relativity Theory, Trans.Am.Math.Soc., 27 (1925) 106-136.
 
[20]  Heaviside Oliver, Electrical Papers, V.1, Macmillan and Co., London, New York, 1892; 594 pp, Heaviside Oliver, Some Properties of Maxwell Equations, Phil.Trans.Roy.Soc.A, 1893; 183:423-430, Heaviside Oliver, Electromagnetic Theory, London, The Electrician Printing and Publishing Company Limited, 1893; 466 pp.
 
[21]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, To Principles of Quantum Theory Construction, to be published.
 
[22]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, "Boson Model of Quantized EM-Field and Nature of Photons", 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490 (2014).
 
[23]  Abdelhak Djouadi, The Higgs mechanism and the origin of mass, The 8-th Int.Conf. on Progress in Theor.Phys., AIP Conf.Proc., 1444 (2012) 45-57.
 
[24]  D.Yearchuck, A.Alexandrov and A.Dovlatova, To Nature of Electromagnetic Field, Appl.Math.Comput.Sci., 3, N 2 (2011) 169-200.
 
[25]  Born M, Z.f.Phys. 38 (1926) 803; 40 (1926) 167; Experiment and Theory in Physics, Cambridge University Press, 1943, p.23.
 
[26]  Dirac P.A.M, On the Theory of Quantum Mechanics, Proc.Roy.Soc.A, 112 (1926) 661-677.
 
[27]  Dirac P.A M, The Quantum Theory of Emission and Absorption of Radiation, Proc.Roy.Soc.,A, 114 (1927) 243-265.
 
[28]  SchrÄodinger E, Die gegenwÄartige Situation in der Quantenmechanik, Die Naturwissenschaften, 50 (1935) 844-849.
 
[29]  SchrÄodinger E, Berl.Ber., I6.April I93I.
 
[30]  SchrÄodinger E, Annales de l'Institut H. Poincare, 269 (Paris, 1931).
 
[31]  SchrÄodinger E, Cursos de la universidad internacional de verano en Santander, I, 6o (Madrid, Signo, I935).
 
[32]  Dirac P.A.M, The Physical Interpretation of the Quantum Dynamics, Proc.Roy.Soc.A, 113 (1927) 621-641.
 
[33]  Dmitri Yerchuck, Yauhen Yerchak, Alla Dovlatova, Vyacheslav Stelmakh, Felix Borovik, The Photon Concept and the Physics of Quantum Absorption Process, in press.
 
[34]  Misochko O V, Nonclassical states of lattice excitations: squeezed and entangled phonons, Phys.-Usp., 56 (2013) 868.
 
[35]  Lee K. C., Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X.-M., Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A, Entangling Macroscopic Diamonds at Room Temperature, Science, 334 (2011) 1253-1256.
 
[36]  Dempster A J, Batho H F, Phys.Rev.,30 (1927) 644.
 
[37]  Scully M O, Zubairy M S, Quantum Optics, Cambridge University Press, 1997, 650 pp.
 
[38]  Dmitri Yerchuck, Felix Borovik, Alla Dovlatova, Andrey Alexandrov, Concept of Free Acoustic Field, British Journal of Applied Science and Technology, 4, N 15 (2014) 2169-2180.
 
[39]  Su W.-P., Schrie®er J.R, Heeger A.J, Soliton Excitations in Polyacetylene, Phys.Rev.B, 1980; 22: 2099-2111.
 
[40]  Lee K. C., Sussman B J, Sprague M R, Michelberger P, Reim K F, Nunn J, Langford N K, Bustard P J, Jaksch D and Walmsley I A, Macroscopic Non-Classical States and Terahertz Quantum Processing in Room-Temperature Diamond, Nature Photonics, 6 (2012) 41-44.
 
[41]  Dodin I.Y, Geometric view on noneikonal waves, Physics Letters A 378 (2014) 1598-1621.
 
[42]  Born M, Jordan P, Zur Quantenmechanik, Zeitschrift fÄur Physik, 34 (1925) 858-888.
 
[43]  Born M, Heisenberg W, Jordan P, Zur Quantenmechanik II, Zeitschrift fÄur Physik, 35 (1926) 557-615.