International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2014, 2(4), 112-117
DOI: 10.12691/ijp-2-4-4
Open AccessArticle

Dark Energy, Exponential Expansion, CMB, Wave/Particle Duality All Result from Lorentz-Covariance of Boltzmann’s Transport Equation

Arne Bergstrom1,

1B&E Scientific Ltd, Seaford BN25 4PA, UK

Pub. Date: August 13, 2014

Cite this paper:
Arne Bergstrom. Dark Energy, Exponential Expansion, CMB, Wave/Particle Duality All Result from Lorentz-Covariance of Boltzmann’s Transport Equation. International Journal of Physics. 2014; 2(4):112-117. doi: 10.12691/ijp-2-4-4

Abstract

The Boltzmann transport equation is the rigorous continuity equation for the angular flux f(r, t, v) of photons at positions r, time t, moving in direction v, and interacting with a surrounding medium by localized collisions. This equation is not necessarily Lorentz-covariant, but can be specialized to a Lorentz-covariant equation describing the propagation of a photon distribution through space. However, this requirement of Lorentz-covariance of the Boltzmann transport equation then leads to a wave-particle duality, in which an ensemble of photons behave as waves, but in which each individual photon interferes only with itself. Applied on cosmological scales, this requirement of Lorentz-covariance of the Boltzmann transport equation also leads to an apparent quantum multiplication, which could explain the existence of the huge amounts of the mysterious “dark energy” that appears to permeate the universe. In addition, it also requires the universe to appear subjected to an exponential expansion as observed, similar to a perspective distortion in time, and then also as a consequence to appear surrounded by a cosmic microwave background radiation (CMB) with an exact Planck spectrum, as observed.

Keywords:
boltzmann’s transport equation cosmological expansion dark energy/dark matter wave/particle duality

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln”, Helvetica Physica Acta 6, 110 (1933). F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae”, Astrophys. J. 86, 217 (1937).
 
[2]  V. Rubin, D. Burstein, W. K. Ford, and N. Thonnard, “Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties”, Astrophys. J. 289, 81 (1985).
 
[3]  S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae”, Astrophys. J. 517, 565 (1999).
 
[4]  A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J. 116, 1009 (1998).
 
[5]  http://en.wikipedia.org/wiki/Planck_(spacecraft) retrieved 2014-06-16.
 
[6]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), pp. 223, 232.
 
[7]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145 (1975).
 
[8]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[9]  A. Bergstrom, “Is CMB just an observational effect of a universe in accelerated expansion?”, International Journal of Physics 1, 133 (2013).
 
[10]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 235.
 
[11]  J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), p. 550.
 
[12]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 236.
 
[13]  R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol III, pp. 1.1-1.9.
 
[14]  P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, 1991), p 9.
 
[15]  J. Frieman, M. Turner, and D. Huterer, “Dark Energy and the Accelerating Universe”, Ann. Rev. Astron. Astrophys. 46 385 (2008).
 
[16]  M. Kemp, The Science of Art: Optical Themes in Western Art from Brunelleschi to Seurat (Yale University Press, 1990).
 
[17]  P. S. Wesson, “Olbers's paradox and the spectral intensity of the extragalactic background light”, Astrophys. J. 367, 399 (1991).
 
[18]  G. D. Starkman and D. J. Schwarz, “Is the universe out of tune?”, Sci. Am. 293(2), 48 (2005).
 
[19]  D. J. Fixsen, E. S. Gheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright, “The cosmic microwave background spectrum from the full COBE FIRAS data set”, Astrophys. J. 473, 576 (1996).
 
[20]  M. Brooks, “13 things that do not make sense”, NewScientist, 19 March 2005.