International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2014, 2(4), 96-104
DOI: 10.12691/ijp-2-4-1
Open AccessArticle

A Functional Model of Measurement in Quantum Theory

Hans H. Diel1,

1Diel Software Beratung und Entwicklung, Seestr. 102, 71067 Sindelfingen, Germany

Pub. Date: July 02, 2014

Cite this paper:
Hans H. Diel. A Functional Model of Measurement in Quantum Theory. International Journal of Physics. 2014; 2(4):96-104. doi: 10.12691/ijp-2-4-1

Abstract

The measurement problem of quantum theory (QT) is the unsolved problem of how the probabilistic predictions of QT are turned into definite measurement results. A related question is whether a measurement in QT implies a collapse of the wave function and what the collapse of the wave function exactly means. Theories proposed on these subjects have not found general agreements among physicists. This paper proposes a solution to the QT measurement problem in terms of a functional model of the measurement process. A functional model describes the process of the dynamic evolution of a physical system. The model assumes that the interactions between the measured QT object and the measurement apparatus are "normal" interactions which adhere to the laws of quantum field theory.

Keywords:
measurement problem Interpretation of Quantum Theory collapse of the wave function functional model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Baumann, K., Sexl, R., Die Deutungen der Quantentheorie, Vieweg Verlag, Braunschweig/Wiesbaden, 1984.
 
[2]  Cramer, J., “The Transactional Interpretation of Quantum Mechanics”, Rev Mod Phys 58, 647-688, 1986.
 
[3]  Wikipedia on Measurement Problem, http://en.wikipedia.org/w/index.php?title=Measurement problem.
 
[4]  Maudlin, T., “Three Measurement Problems”, Topoi-Int Rev Philos 14, 1995.
 
[5]  Everett III, H., “Relative State' formulation of Quantum Mechanics”, Rev Mod Phys 29, 454, 1957.
 
[6]  Feynman, R.P., QED: The Strange Theory of Light and Matter, Princeton University Press, Princeton, 1985.
 
[7]  Diel, H., “The Formulation of Temporal Relationships with Physics Theories”, Pensee Journal, Vol 75, No. 12; Dec 2013.
 
[8]  Wikipedia on Objective collapse theory, 2014.
 
[9]  Feynman, R.P., Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw Hill, New York, 2005.
 
[10]  Diel, H., “A Functional Interpretation of Quantum Theory”, in Proceedings of ICCQMNP Barcelona, 2013.
 
[11]  Dyson, F. J., Advanced Quantum Mechanics, arXiv:quant-ph/0608140v1, 2006.
 
[12]  Ryder, L.H., Quantum Field Theory, Cambridge University Press, Cambridge, 1985.
 
[13]  Griffiths, D., Einfuehrung in die Elementarteilchenphysik.
 
[14]  Mandl, F., Shaw, G., Quantenfeldtheorie, AULA Verlag, Wiesbaden, 1993.