International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2014, 2(4), 96-104
DOI: 10.12691/ijp-2-4-1
Open AccessArticle

A Functional Model of Measurement in Quantum Theory

Hans H. Diel1,

1Diel Software Beratung und Entwicklung, Seestr. 102, 71067 Sindelfingen, Germany

Pub. Date: July 02, 2014

Cite this paper:
Hans H. Diel. A Functional Model of Measurement in Quantum Theory. International Journal of Physics. 2014; 2(4):96-104. doi: 10.12691/ijp-2-4-1


The measurement problem of quantum theory (QT) is the unsolved problem of how the probabilistic predictions of QT are turned into definite measurement results. A related question is whether a measurement in QT implies a collapse of the wave function and what the collapse of the wave function exactly means. Theories proposed on these subjects have not found general agreements among physicists. This paper proposes a solution to the QT measurement problem in terms of a functional model of the measurement process. A functional model describes the process of the dynamic evolution of a physical system. The model assumes that the interactions between the measured QT object and the measurement apparatus are "normal" interactions which adhere to the laws of quantum field theory.

measurement problem Interpretation of Quantum Theory collapse of the wave function functional model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Baumann, K., Sexl, R., Die Deutungen der Quantentheorie, Vieweg Verlag, Braunschweig/Wiesbaden, 1984.
[2]  Cramer, J., “The Transactional Interpretation of Quantum Mechanics”, Rev Mod Phys 58, 647-688, 1986.
[3]  Wikipedia on Measurement Problem, problem.
[4]  Maudlin, T., “Three Measurement Problems”, Topoi-Int Rev Philos 14, 1995.
[5]  Everett III, H., “Relative State' formulation of Quantum Mechanics”, Rev Mod Phys 29, 454, 1957.
[6]  Feynman, R.P., QED: The Strange Theory of Light and Matter, Princeton University Press, Princeton, 1985.
[7]  Diel, H., “The Formulation of Temporal Relationships with Physics Theories”, Pensee Journal, Vol 75, No. 12; Dec 2013.
[8]  Wikipedia on Objective collapse theory, 2014.
[9]  Feynman, R.P., Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw Hill, New York, 2005.
[10]  Diel, H., “A Functional Interpretation of Quantum Theory”, in Proceedings of ICCQMNP Barcelona, 2013.
[11]  Dyson, F. J., Advanced Quantum Mechanics, arXiv:quant-ph/0608140v1, 2006.
[12]  Ryder, L.H., Quantum Field Theory, Cambridge University Press, Cambridge, 1985.
[13]  Griffiths, D., Einfuehrung in die Elementarteilchenphysik.
[14]  Mandl, F., Shaw, G., Quantenfeldtheorie, AULA Verlag, Wiesbaden, 1993.