International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2013, 1(2), 41-48
DOI: 10.12691/ijp-1-2-3
Open AccessArticle

Electric Properties of n-GaN: Effect of Different Contacts on the Electronic Conduction

S. Abdalla1, , F. Marzouki1, S. Al-ameer1 and S. Turkestani1

1Department of Physics, Faculty of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia

Pub. Date: April 26, 2013

Cite this paper:
S. Abdalla, F. Marzouki, S. Al-ameer and S. Turkestani. Electric Properties of n-GaN: Effect of Different Contacts on the Electronic Conduction. International Journal of Physics. 2013; 1(2):41-48. doi: 10.12691/ijp-1-2-3


The forward current–voltage (I–V) characteristics of n-GaN films on sapphire substrate are investigated over a temperature range of 80–300K, using two different types of metal/semiconductor contacts: Al/GaN and Au/GaN. Samples with Al metallic contacts show well defined ohmic behavior with linear forward and reverse I-V characteristics indicating no potential barrier. These measurements made at temperatures in the range 77K-300K show the influence of two donor levels: one is deep at 0.23ev, while the other is shallow at 0.013ev below the conduction band. These values have been confirmed by DSCL measurements and the density of electrons n0 is calculated as a function of temperature and found that n0 = 3.08x10^14cm-3 at 300K. Besides, the mobility of electrons µ has been calculated as a function of temperature and have been found that at 300K: µ = 175cm2/v.s. On the other hand, resistively deposited Au Schottky contacts on n-type GaN show net rectification behavior. In contrast to the published data, the I-V measurements revealed that these Au contacts exhibited bad rectification properties: relatively high reverse current and bad ideality factor (n = 11.5 at 80K). This discrepancy has been attributed to the presence of a series resistance with the Au/n-GaN Schottky diode. The potential drop across this resistance decreases n from 11.5 down to a logic value 1.2 at 80K. Index Terms—GaN diode; contact resistance; ideality factor; transport mechanism.

GaN diode contact resistance ideality factor transport mechanism

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 10


[1]  Jaime Freitas A. Jr., Journal of Physics D: Applied Physics, 43 7 2010.
[2]  International Workshop on Nitride Semiconductors, Tampa, Florida, USA September 19-24, 2010.
[3]  Diamond 21st European Conference on Diamond, Diamond- Like Materials, Carbon Nanotubes, and Nitrides, Budapest, Hungary, 5-9 September 2010.
[4]  Shannon Y., S.  Jibin, P. Darancet, T. D. Tilley,  J. Neaton and R. A. Segalman, Bulletin of the American Physical Society, APS March Meeting, 55, 2, 2010.
[5]  G. Han J., Journal of Physics D: Applied Physics, 42, 4, 2009.
[6]  The 3rd International Symposium on Growth of III-Nitrides, Corum, Montpellier, France, July 4-8, 2010.
[7]  Jyothi I., V. Rajagopal Reddy, M. Siva Pratap Reddy, Chel-Jong Choi, Jong-Seong Bae, physica status solidi (a), 207, 3, 753-759, 2009.
[8]  Francis D., Firooz Faili, John Wasserbauer, Felix Ejeckam, Humphrey Maris and Arto Nurmikko, Formation and Characterization of 4” GaN HEMT-on-Diamond Substrates, Symposium F: Sensor, Electronic and Optical Applications New Diamond and Nano Carbons Conference Traverse City, Michigan, USA 2009.
[9]  Zetterstrom R. B., Journal of Materials Science, 5, 12, 1970
[10]  Reiher F., A Dadgar, J. Bläsing, M. Wieneke, M. Müller, A. Franke, L. Reißmann, J. Phys. D: Appl. Phys., 42 055-107, 2009
[11]  Kimura E., T. Hashizume, Tamotsu, Journal of Applied Physics, 105, 1, 014503-5, 2009.
[12]  Nakamura S. and G. Fasol, "The blue laser diode", Springer Verlag, 1997
[13]  Doverspike K., A. E. Wickenden, S. C. Binarii, D. K. Gaskill and J. A. Freitas, Mat. Res. Soc. Symp. Proc. 395, 897, 1996.
[14]  Maissel L. I.: in "Handbook of thin film technology", (ed. L. I. Maissel and R. Glan), New York, McGraw-Hill, 1-4, 1970.
[15]  Mullins H.and A. Brunnschweiler, Solid State Electron. 19, 47 1976.
[16]  Grussell E., S. Berg and L. P. Andersson, J. Electrochem. Soc. 127, 1573, 1980.
[17]  Vanderbroucke D. A., R. L. van Mierhaegte, W. H. Lafrere and F. Cardon, Semicon. Sci. Technol. 2, 293, 1987.
[18]  Fonash S. J., S. Ashok and R. Singh, Appl. Phys. Lett. 39, 423, 1981.
[19]  Auret F. D., S. A. Goodman, Y. Leclerc, G. Myburg and C. Schutte, Materials Science and Technology 13, 945, 1997.
[20]  K. Wang, R.X. Wang, S. Fung, C.D. Beling, X.D. Chen, Y. Huang, S. Li, S.J. Xu, M. Gong, Film thickness degradation of Au/GaN Schottky contact characteristics, 117(1), 21-25, 25 February 2005.
[21]  Z.Z. Chen, Z.X. Qin, C.Y. Hu, X.D. Hu, T.J. Yu, Y.Z. Tong, X.M. Ding, G.Y. Zhang, Ohmic contact formation of Ti/Al/Ni/Au to n-GaN by two-step annealing method Materials Science and Engineering B 111 36-39, 2004.
[22]  Z.X. Qin, Z.Z. Chen, Y.Z. Tong, X.M. Ding, X.D. Hu, T.J. Yu, G.Y. Zhang, Study of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au ohmic contacts to n-GaN, Applied Physics A, 78(5), 729-731, March 2004.
[23]  N. A. Papanicolaou, M. V. Rao, J. Mittereder, and W. T. Anderson, J. Vac. Sci. Technol. B 19, 261 2001.
[24]  L. Dobos, L. Tóth, B. Pécz, Zs.J. Horváth, Z.E. Horváth, A.L. Tóth, B. Beaumont, Z. Bougrioua, Bilayer Cr/Au contacts on n-GaN, Vacuum, 86(6), 769-772, 27 January 2012.
[25]  V. Rajagopal Reddy, P. Koteswara Rao, Annealing temperature effect on electrical and structural properties of Cu/Au Schottky contacts to n-type GaN, Microelectronic Engineering 85, 470-476, 2008.
[26]  The carrier donor density and the sample were supplied by the manufacture: ATMI Company (USA) with donor concentration (5-9) x 1016 cm-3.
[27]  Hacke P., T. Detchprohm, K. Hiramatsu and N. Sawaki, Appl. Phys. Lett. 63, 2676, 1993.
[28]  Ruvimov S., Z. Liliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.-F. Fan, S. N. Mohammed, W. Kim, A. E. Botchkarev and H. Morkoc, Appl. Phys. Lett. 69, 1556, 1996.
[29]  Foresi, J.S., and Moustakas, TD, Applied Physics Letters, 62, 2859-2861, 1993.
[30]  Soha C. B., D. Z. Chib, H. F. Lima and S. J. Chuaa, Comparative, Mat. Res. Soc. Symp. Proc. 719, 2002.
[31]  Bougrov V., M.E. Levinshtein, Rumyantsev, S.L., A. Zubrilov, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York, 1-30, 2001.
[32]  Abdalla S., M. Dongol and M. M. Ibrahim, J. Non-Crystalline Solids, 113, (1989) 113. See also B. Pistoulet F.M. Roche and S. Abdalla, Phys. Rev. B 30, 5987-5999, 1984.
[33]  S.M. Sze,; "Physics of Semiconductor Devices", New Jersey: John Wielly & Sons, 1981.
[34]  Akkal B., Z. Benamara, H. Abid, A. Talbi and B. Gruzza, Materials Chemistry and Physics, 85, 27-31, 2004.
[35]  V. Lang , Deep-level transient spectroscopy: A new method to characterize traps in semiconductors, J. Appl. Phys. 45, 3023, 1974.
[36]  Z. Zhang, C. Hurni, A. Arehart, J. Yang, R. Myers, J. Speck and A. Ringel, Deep traps in non-polar m-plane GaN grown by ammonia-based molecular beam epitaxy, Appl. Phys. Lett. 100, 052114, 2012.
[37]  D. Haase, M. Schmid, W. Kurner, A.Dornen, V. Harle, F. Schltz, M. Burkard, H. Schwiezer, Appl. Phys. Lett., 69, 2525, 1996.
[38]  W. I. Lee, T. C. Haung, J. D. Guo and M. S. Feng, Appl. Phys. Lett. 67, 1721, 1995.
[39]  D. W. Jenkins and J. D. Dow, Phys. Rev. B 39, 3317, 1989.