International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2013, 1(2), 28-40
DOI: 10.12691/ijp-1-2-2
Open AccessArticle

Pulsed Laser Impact on Ferrimagnetic Nanostructures

Mykola Krupa1 and Andrii Korostil1,

1Department of Nanostructure Physics, Institute of Magnetism NASU, Kyiv, Ukraine

Pub. Date: April 26, 2013

Cite this paper:
Mykola Krupa and Andrii Korostil. Pulsed Laser Impact on Ferrimagnetic Nanostructures. International Journal of Physics. 2013; 1(2):28-40. doi: 10.12691/ijp-1-2-2


We have studied the mechanisms of a pulsed laser impact on the magnetization conFigureuration in ferrimagnetic multilayered magnetic nanostructures, specifically, tunneling magnetic junctions. The mechanism of such the laser-induced impact is a complex process of laser-induced thermal demagnetization of magnetic sublattices with subsequent biasing by internal magnetic fields of different nature. Depending on an intensity of laser pulses it can be effective internal magnetic fields of laser irradiation or internal magnetic fields connected with different rates of the heat demagnetization of ferrimagnetic sublattices. It is shown that investigated ferrimagnetic nanostructure are characterized very small times of the laser-induced remagnetization, which can attain subpicosecond scales.

pulsed laser radiation ferrimagnetic nanostructures magnetization reversal

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 14


[1]  Gerrits, Th., Van den Berg, H.A.M., Hohlfeld, J., Bär, L., and Rasing, Th., “Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping,” Nature, 418. 509-512. Aug.2002.
[2]  Tudosa, I., Stamm, C., Kashuba, A.B., King, F., Siegmann, H. C., Stöhr, J., Ju, G., Lu, B. and Weller, D., “The ultimate speed of magnetic switching in granular recording media,” Nature Physics, 428. 831-833. Apr.2004.
[3]  Devolder, T., A., Suzuki, Y., Chappert, C., Crozat, P. and Yagam, K., ”Temperature study of the spin-transfer switching speed from dc to 100 ps,” J. Appl. Phys. 98 (5). 053904-053911. Sept.2005.
[4]  Acremann, Y., Strachan, J., Chembrolu, V., Andrews, S., Tyliszczak, T., Katine, J., Carey, M., Clemens, B., Siegmann, H. and Stöh, J., “Time-Resplved Imaging of Spin Transfer Switching: Beyond the Macrospin Concept,” Phys. Rev. Lett., 96 (21) , 217202-1− 217202-4. Jun.2006.
[5]  Vahaplar, K., Kalashnikova, A. M., Kimel, A. V., Hinzke, D., Nowak, U., Chantrell, R., Tsukamoto, A., Itoh, A., Kirilyuk, A., and Rasing, T.,”Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State,” Phys. Rev. Lett. 103 (11). 117201-1−117201-4. Sept.2009.
[6]  Stöhr, J. and Siegmann, H.C. Magnetism: From Fundamentals to Nanoscale Dynamics, Springer-Verlag Publisher, Berlin, 2006, 223.
[7]  Keller, U., “Recent developments in compact ultrafast lasers,” Nature, 424. 831-838. Aug.2003.
[8]  Krupa, N.N., Korostil, A.M., “On laser-induced magnetoresistance effect in magnetic junctions,” International Journal of Modern Physics B, 26 (31) 20146-1−20146-14. Dec.2012.
[9]  Krupa, N.N., “Photo-driven spin transistor based on magnetic heterogeneous nanostructures,” in 5th International Conference on Nanoelectronic Functional Basis, Kharkov University Publishers, 247-250, 2012.
[10]  Bigot, J.-Y., Vomir, M., and Beaurepaire, E., “Coherent ultrafast magnetism induced by femtosecond laser pulses,” Nature Physics, 5. 513-519. July. 2009.
[11]  Korostil, A.M., “A field-controlled current in nanojunctions,” in 5th International Conference on Nanoelectronic Functional Basis, Kharkov University Publishers, 54-57, 2012.
[12]  Korostil, A.M., “Calculation of tunneling current in nanojunctions,” Modelling and information systems, 64. 22-32. Aug.2012.
[13]  Stanciu, C.D., Kimel, A.V., Hansteen, F., Tsukamoto, A., Itoh, A., Kirilyuk, A., and Rasing, T., “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B, 73(22). 220402-1−220402-4. June.2006.
[14]  Stanciu, C.D., Hansteen, F., Kimel, A.V., Tsukamoto, A., Itoh, A., Kirilyuk, A., and Rasing, T., “Subpicosecond Magnetization Reversal across Ferrimagnetic Compensation Points,” Phys. Rev. Lett. 99 (21). 217204-1−217204-4. Nov.2007.
[15]  Radu, I., Vahaplar K., Stamm C.,et al., “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature, 472. 205-208. March.2011.
[16]  Vahaplar, K., Ultrafast Path for Magnetization Reversal in Ferrimagnetic GdFeCo Films, Doctoral thesis, 2011.
[17]  Ostler, T.A., Barker, J., Evans, R.F.L., et al., “Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet,” Nature Communications, 3. 1-6. Feb. 2012.
[18]  Pershan, P.S , Ziel, J.P , and Malmstrom, L.D., “Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena,” Phys. Rev. 143(2).574-583.March.1966.
[19]  Hertel, R , “Viewpoint: For faster magnetic switching – destroy and rebuild,” J . Phys.: Condens. Matter., 2. 73-76. Sept.2009.
[20]  Kimel, A.V., Kirilyuk, A., Hansteen, F., Pisarev, R.V., and Rasing, Th., “Nonthermal optic control of magnetism and ultrafast laser-induced spin dynamics in solids,” Phys.:Condens. Matter., 19(4), 043201-043224 (2007).
[21]  Gulyaev, Yu.V., Zil’berman, P.E., Epshtein E.M., and Elliott, R.J., Current-induced spin injection and surface torque in ferromagnetic metallic junctions,” JETP, 100(5). 1005-1017. May.2005.
[22]  Landau, L.D., Lifshitz, E.M., “On the theory of the dispersion of magnetic permeability in ferromagnet bodies,” Phys. Z. Sowjet., 8(1). 153-169. Jan.1935.
[23]  Kaplan, J. and Kittel, J., “Exchange Frequency Electron Spin Resonance in Ferrites,” J. Chem. Phys. 21(4). 760-761. Febr.1953.