International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2022, 10(4), 193-203
DOI: 10.12691/ijp-10-4-2
Open AccessReview Article

Double Convection of a Binary Viscoelastic Fluid under Helical Force Effect: Linear and Weakly Nonlinear Analysis

Kpossa Gbedode Mathieu1 and Monwanou Vincent Adjimon1,

1Institut de Mathématiques et de Sciences Physiques (IMSP), Laboratoire de la Mécanique des Fluides, de la Dynamique Non linéaire et de la Modélisation des Systèmes Biologiques (LMFDNMSB), Porto-Novo, Bénin

Pub. Date: September 27, 2022

Cite this paper:
Kpossa Gbedode Mathieu and Monwanou Vincent Adjimon. Double Convection of a Binary Viscoelastic Fluid under Helical Force Effect: Linear and Weakly Nonlinear Analysis. International Journal of Physics. 2022; 10(4):193-203. doi: 10.12691/ijp-10-4-2

Abstract

We used linear stability theory based on the normal mode decomposition technique to study the criterion of appearance of the stationary convection and the oscillatory convection in a binary viscoelastic fluid mixture in a porous medium under the effect of helical force. Nonlinear stability theory based on the minimum representation of double Fourier series is used to study the rate of heat and mass transfer. We have determined the analytical expression of the Rayleigh number of the system as a function of the dimensionless parameters. Expressions for heat and mass transfer rates are determined as a function of Nusselt and Sherwood number, respectively. The transient behaviors of the Nusselt number and the Sherwood number are studied by solving the finite amplitude equations using the Runge - Kutta method. Then, the effect of each dimensionless parameter on the system is studied pointed out interesting results.

Keywords:
helical force stationary convection oscillatory convection viscoelastic fluid porous medium stability theory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. (Springer-Verlag, New York, 2006).
 
[2]  D. B. Ingham and I. Pop, Transport Phenomena in Porous Media (Elsevier, Oxford, 2005), Vol. III.
 
[3]  K. Vafai, Handbook of Porous Media (Taylor and Francis, London, 2006).
 
[4]  C. W. Horton and F. T. Rogers, Convection currents in a porous medium, J. Appl. Phys. 16, 367 (1945).
 
[5]  E. R. Lapwood, Convection of a fluid in a porous medium, Proc. Cambridge Philos. Soc. 44, 508 (1948).
 
[6]  D. A. S. Rees and I. Pop, Local thermal non-equilibrium in porous medium convection. In Transport Phenomena in Porous Media, edited by D.B. Ingham and I. Pop (Elsevier, Oxford, 2005), Vol. III, p. 147.
 
[7]  D. A. S. Rees and I. Pop, Vertical free convective boundary layer flow in a porous medium using a thermal non- equilibrium model, J. Porous Media 3, 31 (2000).
 
[8]  D. A. S. Rees, Vertical free convective boundary layer flow in a porous medium using a thermal non-equilibrium model: Elliptic eects, J. Appl. Math. Phys. 54, 437 (2003).
 
[9]  N. Banu and D. A. S. Rees, Onset of Darcy Benard convection using a thermal non-equilibrium model, Int. J. Heat Mass Transfer 45, 2221 (2002).
 
[10]  O. V. Trevisan and A. Bejan, Combined heat and mass transfer by natural convection in a porous medium, Adv. Heat Transf. 20, 315 (1999).
 
[11]  A. Mojtabi and M. C. Charrier-Mojtabi, Double diusive convection in porous media, in Hand Book of Porous Media, edited by K. Vafai (Marcel Dekker, New York, 2000), p. 559.
 
[12]  M. Mamou, Stability analysis of double diusive convection in porous enclosures, in Transport Phenomena in Porous Media II, edited by D. B. Ingham and I. Pop (Elsevier, Oxford, 2002), p. 113.
 
[13]  J. W. Taunton, E. N. Lightfoot, and T. Green, Thermohaline instability and salt fingers in a porous medium, Phys. Fluids 15, 748 (1972).
 
[14]  P. R. Patil and N. Rudraiah, Linear convective stability and thermal diusion of a horizontal quiescent layer of a two component fluid in a porous medium, Int. J. Eng. Sci. 18, 1055 (1980).
 
[15]  P. Vadasz, Coriolis eect on gravity-driven convection in a rotating porous layer heated from below, J. Fluid Mech. 376 (1998) 351375.
 
[16]  M. Mamou, P. Vasseur, and M. Hasnaoui, On numerical stability analysis of double diusive convection in confined enclosures, J. Fluid Mech. 433, 209 (2001).
 
[17]  M. S. Malashetty, Anisotropic thermoconvective eects on the onset of double diusive convection in a porous medium, Int. J. Heat Mass Transfer 36(9), 2397 (1993).
 
[18]  N. Rudraiah, P. K. Shrimani, and R. Friedrich, Finite amplitude convection in a two component fluid saturated porous layer, Int. J. Heat Mass Transfer 25, 715 (1982).
 
[19]  N. Rudraiah and P. G. Siddheshwar, A weak nonlinear stability analysis of double diusive convection with cross-diusion in a fluid saturated porous medium, Heat Mass Transfer 33(4), 287 (1998).
 
[20]  A. N. Borujerdi, A. R. Noghrehabadi, and D. A. S. Rees, Onset of convection in a horizontal porous channel with uniform heat generation using a thermal non-equilibrium model, Transp. Porous Media 69, 343 (2007).
 
[21]  B. T. Murray and C. F. Chen, Double diusive convection in a porous medium, J. Fluid Mech.201, 147 (1989).
 
[22]  A. Bahloul, N. Boutana, and P. Vasseur, Double diusive and Soret induced convection in a shallow horizontal porous layer, J. Fluid Mech. 491, 325 (2003).
 
[23]  S. N. Gaikwad, M. S. Malashetty, and K. Rama Prasad, Linear and non-linear double diusive convection in a fluid saturated anisotropic porous layer with cross-diusion eects, Transp. Porous Media 80(3), 537 (2009).
 
[24]  M. S. Malashetty, M. Swamy, and R. Heera, Double diffusive convection in a porous layer using a thermal non-equilibrium model, Int. J. Therm.Sci. 47, 1131 (2008).
 
[25]  I. S. Shivakumara, A. L. Mamatha, and M. Ravisha, Boundary and thermal non-equilibrium eects on the onset of Darcy Brinkman convection in a porous layer, J. Eng. Math. 67, 317 (2010).
 
[26]  Anoj Kumar and B. S. Bhadauria, Double diusive convection in a porous layer saturated with viscoelastic fluid using a thermal non-equilibrium model, J. Phys. Fluids 23, 054101 (2011).
 
[27]  D. M. Herbert, On the stability of viscoelastic liquids in heated plane Couette flow, J. Fluid Mech. 17, 353 (1963).
 
[28]  T. Green, III, Oscillating convection in an elasticoviscous liquid, Phys. Fluids 11, 1410 (1968).
 
[29]  N. Rudraiah, P. N. Kaloni, and P. V. Radhadevi, Oscillatory convection in a viscoelastic fluid through a porous layer heated from below, Rheol. Acta 28, 48 (1989).
 
[30]  N. Rudraiah, P. V. Radhadevi, and P. N. Kaloni, Convection in a viscoelastic fluid saturated sparsely packed porous layer, Can. J. Phys. 68, 1446 (1990).
 
[31]  Laroze, D., Maritnez-Mardones, J., Bragard, J., Thermal convection in a rotating binary viscoelastic liquid mixture, Eur. Phys. J. Special Top. 146, 291300 (2007).
 
[32]  Kim, M.C., Lee, S.B., Kim, S., Chung, B.J., Thermal instability of viscoelastic fluids in porous media, Int. J. Heat Mass Transf. 46, 50655072 (2003).
 
[33]  Yoon, D.Y., Kim, M.C., Choi, C.K. The onset of oscillatory convection in a horizontal porous layer saturated with viscoelastic liquid, Transp. Porous Media 55, 275284 (2004).
 
[34]  Sheu, L.J., Tam, L.M., Chen, J.H., Chen, H.K., Lin, K.T., Kang, Y. Chaotic convection of viscoelastic fluids in porous media, Chaos Solitons Fractals 37, 113124 (2008).
 
[35]  Wang, S., Tan, W. Stability analysis of double-diusive convection of Maxwell fluid in a porous medium heated from below, Phys. Lett. A 372, 30463050 (2008).
 
[36]  Gaikwad, S.N., Malashetty, M.S., Prasad, K.R, Linear and non-linear double diusive convection in a fluid saturated anisotropic porous layer with cross-diusion effects, Transp. Porous Media 80, 537-560 (2009).
 
[37]  Malashetty, M.S.; Tan, W.C.; Swamy M., The onset of double diusive convection in a binary viscoelastic fluid saturated anisotropic porous layer, Phys. Fluids 2009, 21, 084101.
 
[38]  Kumar, A., Bhadauria, B.S., Thermal instability in a rotating anisotropic porous layer saturated by a viscoelastic fluid, Int. J. Non-linear Mech. 453454 (2010).
 
[39]  S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, New-York, 1981.
 
[40]  M. Steenbeck, F. Krause, K.H. Rdler, Zur Berechnung der mittleren Lorentz-Feldstrke u × B furein elektrisch leitendes Medium in turbulenter, durch Coriolis-Krfte beeinflusster Bewegung, Z. Naturforsch 21a (1966) 369376.
 
[41]  G.V. Levina, S.S. Moiseev, P.B. Rutkevich, Hydrodynamic alpha-eect in a convective system, in: L. Debnath, D.N. Riahi (Eds.), Advances in Fluid Mechanics, Nonlinear Instability, Chaos and Turbulence, WIT. Press, Southampton, 2000.
 
[42]  G.V. Levina, I.A. Burylov, A. V. Firylyov, L.V. Shestakova, Helical-vortex instability in a convectively unstable fluid: origin and numerical simulation, ICM- MAUBRAS, Perm (2004).
 
[43]  G.V. Levina, Parameterization of helical turbulence in numerical models of intense atmospheric vortices, Dokl. Earth Sci. 411A (2006) 14171420.
 
[44]  G. V. Levina, I. A. Burylov, Numerical simulation of helical-vortex eects in Rayleigh-Benard convection, Non-linear Process Geophys. 13 (2006) 205-222.
 
[45]  M. Essoun, J.B. Chabi Orou, Eects of rotation and helical force on the onset of Rayleigh-Benard convection with free-free boundaries, Afr. Phys. Rev.4 (2010) 65-71.
 
[46]  P. Hounsou, A.V. Monwanou, C.H. Miwadinou, J.B. Chabi Orou, Eect of helical force on the stationary convection in a ferrofluid, Indian J. Phys (2020) 94:1581-1590.
 
[47]  P. Hounsou, A.V. Monwanou, C.H. Miwadinou, J.B. Chabi Orou, Eect of helical force on the stationary convection in a rotating ferrofluid, Chinese Journal of Physics 65 (2020) 526-537.
 
[48]  P. Hounsou, A. V. Monwanou, C. H. Miwadinou and J. B. Chabi Orou, Stationary convection in a binary mixture of ferrofluids in a porous medium, Fluid Dyn. Res. 52 (2020) 035501 (21pp).