International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2014, 2(1), 1-7
DOI: 10.12691/ijp-2-1-1
Open AccessArticle

Anharmonicity and Disorder Effect on the Free Energy of Crystalline Solids

M. Ataullah Ansari1 and B.D. Indu2,

1Physics Department, Techwords W.G.V.S. Group of Institution, Manglour, Roorkee, Uttarkahand, India

2Physics Department, Indian Institute of Technology, Roorkee, Uttarkahand, India

Pub. Date: January 17, 2014

Cite this paper:
M. Ataullah Ansari and B.D. Indu. Anharmonicity and Disorder Effect on the Free Energy of Crystalline Solids. International Journal of Physics. 2014; 2(1):1-7. doi: 10.12691/ijp-2-1-1


Dealing with the anharmonic phonon-electron problem with the help of double time temperature dependent Green’s Function theory of quantum dynamics the general and explicit expressions for the lattice energy, partition function, free energy have been derived for an impurity induced anharmonic crystalline solid. The effects of mass and force constant change terms between the impurity and host lattice atoms are taken into account, and the cubic and quartic anharmonic terms are also retained in an almost complete Hamiltonian to develop the many body theory. The general trend of low and high temperature contributions to Helmholtz free energy is obtained via three dimensional graphics.

anharmonicity density of States impurity-anharmonicity interference modes free energy widths and shifts

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Van Hove, Quantum Theory of Many Particle Systems (Benjamin, New York, 1961).
[2]  A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall, Anharmonic Contributions to Vibrational Thermodynamic Properties of Solids Part II. The High Temperature Limit, Ann. Phys. (N.Y.) 15, 360-386, 1961.
[3]  R. C. Shukla and E. R.Cowley, Anharmonic Free Energy of an Anharmonic Crystal to O(λ4) Phys. Rev. B 3, 4055-4065. 1971.
[4]  R. C. Shukla, and E. R. Muller, On Renormalization of Einstein Phonons and Green’s Function, Ames. J. Phys. 39, 77-82. 1971.
[5]  R. C. Shukla, and E. R. Muller, On Renormalization of Einstein Phonons. II. The Diagrammatic Method and Helmholtz Free Energy, Ames. J. Phys. 40, 544-549, 1972.
[6]  R. C. Shukla, L. Wilk, Helmholtz Free Energy of an Anharmonic Crystal to O(λ4) II. Phy. Rev. B 10, 3660-3666. 1974.
[7]  R. C. Shukla, B. R.Taylor, Anharmonic Free Energy and Specific Heat at Constant volume of Sodium and Potassium, Phy. Rev. B 9, 4116-4120, 1974.
[8]  M. L. Klein and T. R. Koehler, Rare Gas Solids, Vol. 1 eds. M. L. Klein and J. A. Venables (Academic, New York, 1976).
[9]  M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954).
[10]  A. A. Maradudin, A. E. Fein, Scattering of Neutrons by an Anharmonic Crystal, Phys. Rev. 128, 2589-2608, 1963.
[11]  K. N. Pathak, Theory of Anharmonic Crystals, Phys. Rev. 139, A 1569-1580, 1965.
[12]  B. D. Indu, Theory of Lattice Specific Heat of an Isotopically Disordered anharmonic Crystal, Intern. J. Mod. Phys. B 4, 1379-1393. 1990.
[13]  B. D. Indu and R. P. Gairola, Five Phonon Interactions in Anharmonic Crystals, Ind. J. Theor. Phys. 33, 115-143, 1985.
[14]  A. A. Maradudin, Solid State Physics, Vols. 18 and 19, ed. F. Seitz and D. Turnbull, 273 & 1 (Academic Press, 1961).
[15]  A. A. Maradudin, P. A. Flinn and R. A. Coldwell-Horsfall, Anharmonic Contributions to Vibrational Thermodynamic Properties of Solids Part I. General Formulation and Application to Linear Chain, Ann. Phys. (N.Y.) 15, 337-359, 1961.
[16]  P. A. Flinn and A. A. Maradudin, Anharmonic Contributions to Vibrational Thermodynamic Properties of Solids Part III. The Low Temperature Limit, Ann. Phys. (N.Y.) 22, 223-238, 1963.
[17]  Ram Singh, B.D. Indu, R.P.Gairola and M.N.Sharma, Thermodynamics of Impure Anharmonic Crystals. Int.J.Theor. Phys. 32, 861-878, 1993.
[18]  J. D. Launay, Solids State Physics Vol. 2, eds. F.Seitz and D. Turnbull, 220 (Academic Press, 1956).
[19]  Vinod Ashokan and B.D. Indu, Thermal conductivity of Bi-Sr-Ca–Cu–O superconductors, Thin Solid Films 518, e 28-e 30, 2010.
[20]  Vinod Ashokan, Ashok K. Dimri and B.D. Indu, Signature of electron-phonon interaction in high temperature superconductors, AIP Advances 1, 032101-16, 2011.
[21]  R. Bahadur and P. K. Sharma, Specific Heat Due to Substitutional Defects in Crystals, Solid State Commun. 15, 621-624, 1974.
[22]  R. A. Cowley, Phonons in Perfect Lattice and in Lattices with Point Imperfection, ed. R.W. H. Stevenson 170 (Oliver and Boyd Ltd., Edinburgh, 1966).
[23]  R. E. Peierls, Quantum Theory of Solids, (Clarendon Press, 1955) Chap. II.
[24]  N. R. Werthamer. Self-Consistent Phonon Formulation of Anharmonic Lattice Dyanmics, Phys. Rev. B 1, 572-581, 1970.
[25]  J. C. K. Hui and P. B. Allen, Thermodynamics of Anharmonic Crystals with Application to Nb, J. Phys. C 8, 2923-2935, 1975.
[26]  A. A. Maradudin, P. A. Flinn, Anharmonic Contribution to the Debye-Waller Factor, Phys. Rev. 129, 2529-2547, 1963.
[27]  R. C. Shukla, Analysis of the Debye Waller Factor and Multi-Phonon Series contributions to the Phonon Limited Resistivity of Metals, Phys. Rev. B 22. 5810-5817. 1980.
[28]  N. H. March, W. M Young and S. Sampanthar, The Many-Body Problem in Quantum Mechanics 276 (Cambridge Univ. Press, 1967).
[29]  R. P. Gairola, Lattice Viscosity of Anharmonic Crystals with Impurities, Intern. J. Mod. Phys. B 5, 815-824, 1991.
[30]  C. Fan, D. D. Do, D. Nicholson and E. Ustinov, Chemical potential, Helmholtz free energy and entropy of argon with kinetic Monte Carlo simulation, Molecular Physics (2013).
[31]  Kuwabara, K. Matsunaga, and I. Tanaka, Lattice dynamics and thermodynamical properties of silicon nitride polymorphs, Phys. Rev. B 78, 064104-1-11, 2008.
[32]  S. L. Shang, Y. Wang, D. E. Kim, C. L. Zacherl, Y. Du, and Z. K. Liu, Structural, vibrational and thermodynamic properties of ordered and disordered Ni1-xPtx alloys from first-principles calculations, Phys. Rev. B 83, 144204-1-13, 2011.