International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2021, 9(5), 245-250
DOI: 10.12691/ijp-9-5-4
Open AccessArticle

General Formulation of Ångström-Prescott Coefficients: A New Approach for Côte d’Ivoire

Maurice Aka Djoman1, , Ferdinand Wanignon Fassinou1 and Augustin Memelèdje1

1Laboratoire des Sciences des Matériaux de l’environnement et d’Energie Solaire, UFR SSMT, Université Félix Houphouet-Boigny, Abidjan, Côte d’Ivoire

Pub. Date: September 02, 2021

Cite this paper:
Maurice Aka Djoman, Ferdinand Wanignon Fassinou and Augustin Memelèdje. General Formulation of Ångström-Prescott Coefficients: A New Approach for Côte d’Ivoire. International Journal of Physics. 2021; 9(5):245-250. doi: 10.12691/ijp-9-5-4


In this study, we used calibrated annual Ångström-Prescott (AP) coefficients of nine (9) weather stations in Côte d'Ivoire to formalize two general equations expressing them as a function of the latitude and altitude. The aim is formalizing the general equations of Ångström-Prescott coefficients that can be used to increase the density of global horizontal irradiance. The Ångström-Prescott coefficients thus obtained were compared with the values calibrated using the root mean square error (RMSE), the mean bias error (MBE), the mean absolute bias error (MABE), the NSE coefficient and the statistical t-test (t-stat) with the following results for coefficients a and b respectively: 0.00935143, -0.00042828, 0.00825164, 0.99734601, 0.12129825 and 0.00633772, -0.00017254, 0.00471422, 0.7653197, 0.072056623. To improve the estimation of coefficient a, we linked it to the coefficient b by a polynomial function of degree two. This equation led to a significant decrease in the absolute estimation error of coefficient a resulting in low values of RMSE and MABE. RMSE decreased from 0.00935143 to 0.00498464 and MABE decreased from 0.00825164 to 0.00346367. The low values of the statistical t-test (t-stat) (0.45735957 for a and 0.07205623 for b) for the two equations show that the model agrees well with the data. The good agreement between the annual Angström-Prescott coefficients estimated and calibrated also confirmed by high NSE coefficients (0.99924593 for a and 0.7653197 for b) recommends the use of this model in any site in Côte d'Ivoire to predict global horizontal irradiance.

Ångström-Prescott coefficients global solar radiation relative sunshine duration clearness index statistical t-test

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Martinez-Lozano J.A., Tena F., Onrubia J.E., and De La Rubia J., 1984, The historical evolution of the Ångström formula and its modifications: review and bibliography. Agroc. For. Meterol., 33: 109-128.
[2]  Liu X., Xu Y., Zhong X., Zhang W., Porter J. R., Liu W., Assessing models for parameters of the Angström-Prescott formula in China. Applied Energy 96 (2012) 327-338.
[3]  Glover J. and McCulloch J.S.G., 1958a, The empirical relation between solar radiation and hours of sunshine in high altitude tropics, Q.J.R. Meteorol. Soc., 84: 56-60.
[4]  Driedger H.L. and Catchpole J.W., 1970, Estimation of solar radiation from sunshine duration at Winipeg, Meteotol. Mag., 99: 285-291.
[5]  Sfeir A.A., 1981, Solar radiation in Lebanon, Sol. Energy, 26: 497-502.
[6]  Neuwirth F., 1980, The estimation of global and sky radiation in Austria, Sol. Energy, 24: 421-426.
[7]  Crivellii S., 1973, Solar radiation and solar energy in Argentina, Proc. Congr. The sun in the Service of Mankind, UNESCO, Paris.
[8]  Glover J and McCulloch J.S.G., 1958b, The empirical relation between solar radiation and hours of sunshine, Q.J.R. Meteorol. Soc., 84: 172-175.
[9]  Frère M., Rijks J.Q. and Rea J., 1975, Estudio agroclimatologio de la zona andina, Informe téchnico FAO/UNESCO/OMM, Rome.
[10]  Rietveld M.R., 1978, A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine, Agric. Meteorol., 19: 243-252.
[11]  Stigter C.J. and Waryoba J.M., 1981, Campbell–Stokes data for radiation calibration purpose in East Africa, Arch. Meteorol. Geophys. Bioklimatol., Ser. B, 29: 99-109.
[12]  F.S., Beirsdorf M.I.C. and Acosta M.J.C., 1977, Estimates of solar radiation in Brazil, Agric. Meteorol., 18: 241-254.
[13]  Flocas A.A., 1980, Estimation and prediction of global solar radiation over Greece, Sol. Energy, 24: 63-70.
[14]  Malek E., 1979, Determination of the constants for the global radiation equation at Badjgah, Iran, Agric. Meteorol., 20: 233-235.
[15]  Gariepty J., Estimation of global solar radiation, International Report, Service of meteorology, Government of Quebec, Canada, 1980.
[16]  Kilic A. and Ozturk A., Solar Energy, Kipas Distribution, Istanbul, Turkey, 1983.
[17]  Zabara K., Estimation of the global solar radiation in Greece, Solar and Wind Technology 1986, 3(4), 267-272.
[18]  Gopinathan K.K., A general formula computing the coefficients of the correlations connecting global solar radiation to sunshine duration, Solar Energy 1988, 41, 499-502.
[19]  Zhou J., Wu Y., Yan G., General formula for estimation of monthly average daily global solar radiation in China, Energy Convers. Manage 2005; 46: 257-68.
[20]  Liu X., Mei X., Li Y., Wang Q., Zhang Y., Porter J.R., Variation in reference crop evapotranspiration caused by the Angström-Prescott coefficient: locally calibrated versus the FAO recommended, Agric Water Manage 2009; 96: 1137-43.
[21]  Togrull I. T., Togrul H., Evin D., Estimation of global solar radiation under clear sky condition in Turkey, Renewable Energy 21 (2000) 271-287.
[22]  Almorox J., Benito M., Hontoria C., Estimation of monthly Angström-Prescott equation coefficients from calibrated daily data in Toledo, Spain, Renewable Energy 30 (2005) 931-936.
[23]  Jacovides C. P., Kontoyiannis H., Statistical procedures for the evaluation of evaporation computing models, Agric Water Manage 27 (1995) 365-371.
[24]  Jacivides C. P., Reply to comment on ‘Statistical procedures for the evaluation of evaporation computing models’, Agric Water Manage 41 (2000) 311-330.