International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2021, 9(5), 234-239
DOI: 10.12691/ijp-9-5-2
Open AccessArticle

Superluminality and Finite Potential Light-Barrier Crossing

T. G.M. Gerlitz1,

1Department of Computer Sciences, Technological University of Panama, Panama, Republic of Panama

Pub. Date: August 02, 2021

Cite this paper:
T. G.M. Gerlitz. Superluminality and Finite Potential Light-Barrier Crossing. International Journal of Physics. 2021; 9(5):234-239. doi: 10.12691/ijp-9-5-2


Superluminal movements are subject of discussion since many decades. The present work investigates how an electrical charged real matter particle can traverse the energy barrier at the speed of light in vacuum. Here, parity reflexion takes place with respect to space, time, and mass. It is postulated this traversal can occur by a jump-over supported by electrical attraction between the subluminal particle and its virtual superluminal co-particle producing an electrical field opposite in sign. The jump over the light barrier implies a zero in time and here the particle becomes undetectable in position and mass. The result of the calculation shows two exclusive speeds where light-barrier crossing can occur from a sub- to a superluminal state or reverse. This leads to three different kinds of objects, where the first is denoted a subluminal mono-particle Bradyon, the second a superluminal mono-particle Tachyon, and the third a luminal twin Luxon consisting of two parts absolutely complementary in their states alternating between the both speeds, those touch the light-barrier, and traveling with an average of light-speed. A relation between the distance of a subluminal particle to its superluminal co-particle and the wave-length of the system can be manifested. The constant in speed of light is discussed.

special relativity superluminality CPT operation time reversal

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Sommerfeld, A.: Zur Elektronentheorie. III. Ueber Lichtgeschwindigkeits- und Ueberlichtgeschwindigkeits-Elektronen.. Nachr. Gesellschaft fr Wissenschaftsforschung. Goettingen Feb. 25 (1905) 201-235.
[2]  Sommerfeld, A.: Ein Einwand gegen die Relativtheorie der Elektrodynamik und seine Beseitigung. Phys. Zeitschr. 8 (1907) 841-842.
[3]  Feinberg, G.: Possibility of faster-than-light particles. Phys. Rev. 159 (1967) 1089-1095.
[4]  Recami E.: Aspetti Moderni della Fisica Greca. Giornale di Fisica (Bologna) 11 (1970) 300-312.
[5]  Recami E., Mignani, R.: Classical theory of tachyons. Riv. Nuovo Cim. 4 (1974) 209-290.
[6]  Castorina, P., Recami, E.: Hadrons as compounds of bradyons and tachyons. Lett. Nuovo Cim. 22 (1978) 195-202.
[7]  Einstein, A.: Does the inertia of a body depend on its energy content. Ann. Phys. (Leipzig) 17 (1905) 891-921.
[8]  Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H.: The principle of relativity: A collection of original memoirs on the special and general theory of relativity. Dover Books on Physics, New York, Dover (1952).
[9]  Landau, L.D., Lifschitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford, England (1987).
[10]  Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. 7th Edition, Cambridge University Press, Cambridge, England (1999).
[11]  Tolman, R.C.: The Theory of the Relativity of Motion. University of California Press, Berleley, U.S.A. 1917.
[12]  Recami, E.: Classical tachyons and possible applications: A review. Riv. Nuovo Cimento 9 (1996) 1-178.
[13]  Bilaniuk, O.M.P., Deshpande, V.K., Sudarshan, E.C.G.: Meta relativity. Am. J. Phys. 30 (1962) 718-727.
[14]  Folman, R., Recami, E.: On the phenomenology of tachyon radiation. Found. Phys. Lett. 8 (1995) 127-134.
[15]  Mignani, R., Recami, E., Baldo, M.: About a Dirac-like equation for the photon according to Ettore Majorana. Lett. Nuovo Cimento 11 (1974) 568-572.
[16]  Crough, P., Clay R.: Nick, H. (ed.) Faster than Light, pp. 135-136. Nal Books, New York (1988).
[17]  Recami, E.: Albert Einstein 1879-1979. In: De Finis F., Pantaleo, M. (eds.) Relativity, Quanta, and Cosmology. Johnson Reprint Co., New York (1979) pp. 537-597.
[18]  Recami, E.: The Tolman/Regge paradox: Its solution by tachyon. Lett. Nuovo Cimento 44 (1985) 587-593.
[19]  Recami, E.: Tachyon mechanics and causality: A systematic thorough analysis of the tachyon causal paradoxes. Found. Phys. 17 (1987) 239-296.
[20]  Nimtz, G.: Superluminal signal velocity. Ann. Phys. (Leipzig) 7 (1998) 618-624.
[21]  Mugnai, D., Ranfagni, A., Ruggeri, R.: Observation of superluminal behaviors in wave propagation. Phys. Rev. Lett. 84 (2000) 4830-4833.
[22]  Stahlhofen, A.A., Nimtz, G.: Evanescent modes are virtual photons. Europhys. Lett. 76 (2006) 189-195.
[23]  Withayachumnankui, W., Fischer, B.M., Ferguson, B., Davis, B.R., Abbot, D.: A systemized view of superluminal wave propagation. Proc. IEEE 22 (2010) 1-10.
[24]  Krenzlin, H.M., Krenzlin, H., Budczies, J., Kehr, K.: Wave packet tunneling. Ann. Phys. (Leipzig) 7 (1998) 732.
[25]  Melloy, G.F., Bracken, A.J.: The velocity of probability transport in quantum mechanics. Annalen der Physik (Leipzig) 7 (1998) 726-721.
[26]  Garret, C.G.B., McCumber, D.E.: Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A, Gen. Phy. 1 (1970) 305-313.
[27]  Chu, S., Wong, S.: Linear pulse-propagation in an absorbing medium. Phys. Rev. Lett. 48, (1982) 738-741.
[28]  Peterson, I.: Faster-than-light time tunnels for photons. Science News 146 (1994) 6-9.
[29]  Schmid, R., Sun, Q.: Proceedings of Institute of Mathematics of NAS of Ukraine 6 (2001) 1-12.
[30]  Casimir, H. B. G.; Polder, D. The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 73 (1948) 360-372.
[31]  Childs, L. A. A Concrete Introduction to Higher Algebra. Springer, New York (2009).
[32]  Martin, Th., Landauer, R.: Time delay of evanescent electromagnetic waves and the analogy to particle tunneling. Phys. Rev. A 45 (1991) 2611-2617.
[33]  Enders, A., Nimtz, G.: Evanescent-mode propagation and quantum tunneling. Phys. Rev. E 48 (1993) 632-634.
[34]  Nimtz, G.: Instantanes Tunneln Tunnelexperimente mit elektromagnetischen Wellen. Phys. Bl. 49 (1993) 1119-1120.
[35]  Deutch, J.M., Low, F.E.: Barrier penetration and superluminal velocity. Ann. Phys. (NY) 228 (1993) 184-202.
[36]  Leavens, C.R., Sala Mayato, R.: Are predicted superluminal tunneling times an artifact of using the nonrelativistic Schroedinger equation? Ann. Phys. (Leipzig) 7 (1998) 662-670.
[37]  Low, F.E.: Comments on apparent superluminal propagation. Ann. Phys. (Leipzig) 7 (1998) 660-661.
[38]  Azbel, M.Y.: Superluminal velocity, tunneling traversal time, and causality. Solid State Comm. 91 (1994) 439-441.
[39]  Hass, K.,Busch, P.: Causality and superluminal barrier traversal. Phys. Rev. Lett. A 185 (1994) 9-13.
[40]  Nimtz, G.: On virtual phonons, photons & electrons. Found Phys. 39 (2009) 1346-1355.
[41]  Nimtz, G.: Tunneling confronts special relativity. Found Phys. 41 (2011) 1193-1199.
[42]  Newton, T.D., Wigner, E.D.: Localized states for elementary systems. Rev. Mod. Phys. 21 (1949) 400-406.
[43]  Wick, G.C., Wightman, A.S., Wigner, E.P.: Intrinsic parity of elementary particles. Rev. Mod. Phys. 34 (1962) 845 -872.
[44]  Nimtz, G., Heitmann, W.: Superluminal photonic tunneling and quantum electronics. Progr. Quantum Electronics 21 (1997) 81-108.
[45]  Tiller, W. A..: Science and Human Transformation. Pavior Publishing, Walnut Creek, CA (1997).
[46]  Mignani, R., Recami, E.: CPT-Covariance: Physical meaning of a new derivation. Lett. Nuovo Cimento 11 (1974) 421-426.
[47]  Pavsic, M., Recami, E.: Charge conjugation and internal space-time symmetries. Lett. Nuovo Cimento 34 (1982) 357-362.
[48]  Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson. R.P.: Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 105 (1957) 1413-1415.