International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2021, 9(3), 155-168
DOI: 10.12691/ijp-9-3-3
Open AccessArticle

Numerical Study of the Thermo-mechanical Behavior of 304L Stainless Steel Pipeline Junctions

Hicham Laribou1, and Abdelhalim Elbasset2

1Laboratoire de Microstructure et de Mécanique des matériaux, Université de Lorraine, Metz, France

2Department of Electrical Engineering, Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fes, Morocco

Pub. Date: May 11, 2021

Cite this paper:
Hicham Laribou and Abdelhalim Elbasset. Numerical Study of the Thermo-mechanical Behavior of 304L Stainless Steel Pipeline Junctions. International Journal of Physics. 2021; 9(3):155-168. doi: 10.12691/ijp-9-3-3


The present paper is focused on the behavior of different junctions under the effect of internal pressure and temperature variation. The main junctions studied are of the T-junction and Y-junction type. The goal being to calculate the stress fields coupled to the temperature variation. This coupling realistically defines the thermo-mechanical behavior of the junction and in particular at the intersection where high stress concentrations are observed. The junction is an element widely used in industrial installations such as the cooling circuits of nuclear power plants which are subject to temperature fluctuations due to the mixture of hot fluids and cold these are called mixing zones. These fluctuations can lead to thermal or mechanical fatigue damage and cracking in the circuits causing leaks. Numerical modelling is carried out on the ANSYS calculation code based on the finite element method.

thermo-mechanical behaviour thermal strain thermal stress tee junction FEM study fatigue damage failure numerical study

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 34


[1]  C. Faidy. La fatigue thermique dans les centrales nucléaires. Enseignement du retour d’expérience. In Proc. of International Symposium on Contribution of Materials Investigations to the resolution of problems encountered in pressurized water reactors, pp 847-857, 2002.
[2]  O. VOLTE, F. BEAUD, “Method for identification of fluid mixing zones subject to thermal fatigue damage. ”, int. conf. on residual fatigue life and life extension of in-service structures, May 30 – June 01, (2006), Paris.
[3]  T. PASUTTO, C. PENIGUEL, M. SAKIZ, J.M. STEPHAN, “Chained computations using an unsteady 3D approach for the determination of thermal fatigue in a T-junction of a PWR nuclear plant” ASME – PVP Conference, July 2005, Denver.
[4]  M.H.C. HANNINK, A.K. KUCZAJ, F.J. BLOM, J.M. CHURCH AND E.M.J. KOMEN, “A coupled CFD-FEM strategy to predict thermal fatigue in mixing tees of nuclear reactors” Nuclear Research and Consultancy Group (NRG) ,(2006), The Netherlands.
[5]  CHAKRAPANI BASAVARAJU, “Thermal Stresses at Dissimilar Pipe-Stanchion Interfaces” ASME Pressure Vessels and Piping Conference, (2004), Bechtel Corporation ,Frederick, Maryland.
[6]  N. HADDARD, “Fatigue thermique d’un acier inoxydable austénitique 304L: simulation de l’amorçage et de la croissance des fissures courtes en fatigue isotherme et anisotherme”, Thèse ENSMP, (2003).
[7]  J.C. LEROUX, F. CURTIT, J.M. STEPHAN, “Study of thermal and mechanical fatigue of 304L stainless steel: comparison between tests on mockups and test on standard specimen”, Int. Fatigue cong. Fatigue 2006, May 14-19, Atlanta.
[8]  HAYASHI M., ENOMOTO K., SAITO T., MIYAGAWA “Development of thermal testing apparatus with BWR water environment and thermal fatigue strength of stainless steel, in : Fracture mechanics applications”, 1994, ASME.
[9]  V. DOQUET, S. TAHERI, “Effet d'un pré-écrouissage ou d'un sur-écrouissage sur la durée de vie en fatigue de divers aciers à contrainte ou déformation imposes”, Revue Française de Mécanique, (2000), pp. 35-40.
[10]  V. MAILLOT, “Amorçage et propagation de réseaux de fissures de fatigue thermique dans un acier inoxydable austénitique de type X2 CrNi18-09 (AISI 304L)”, Thèse ENSMP, (2004).
[11]  F. CURTIT, J.M. STEPHAN “INTHERPOL Thermal fatigue tests”, ASME – PVP Conference, July 2005, Denver.
[12]  A. FISSOLO and al “Advances in thermal fatigue investigations performed in CEA for French PWR pipings - Third International Conference on fatigue of Reactors Components” October 3-6 (2004) – Seville, Spain.
[13]  Le Dret H. (2013) La méthode de Galerkin. In: Équations aux dérivées partielles elliptiques non linéaires. Mathématiques et Applications, vol 72. Springer.
[14]  S. CHAPULIOT , C. GOURDIN , T. PAYEN , J.P. MAGNAUD , A. MONAVON “Hydro-thermal-mechanical analysis of thermal fatigue in a mixing tee” Universities Pierre et Marie Curie, 2 April 2004-France.
[15]  TOSHIHARU MURAMATSU “Evaluation Of Thermal Striping Phenomena At a Tee Junction Of LMFR Piping Systems With Numerical Methods, Thermohydraulic Caculations”, Japan Nuclear Cycle Development Institute, 1999, Japan.
[16]  RICHARD NEKVASIL, “Influence Of Temperature Differences Of Mixed Streams Upon T-Junction Damage” University of Technology, February 21, 2008-Brno.
[17]  M.D. Xue , D.F. Li , K.C. Hwang “Theoretical stress analysis of intersecting cylindrical shells subjected to external loads transmitted through branch pipes” department of engineering mechanics, tsinghua university, 2 July 2004- China.
[18]  BENHAMADOUCHE S., SAKI M., PENIGUEL C., STEPHAN J.M. “Presentation of a New Methodology of Chained Computations using Instationary 3D Approaches for the Determination of Thermal Fatigue in a T-Junction of a PWR Nuclear Plant”, In 17th International Conference structural Mechanics in Reactor Technology (SMIRT 17), Prague 2003.
[19]  H.-Y.LEE, J.-B.KIM, B.YOO. “Tee-Junction Of LMFR Secondary Circuit Involving Thermal, Thermomechanical And Fracture Mechanics Assessment On A Striping Phenomenon” Korea Atomic Energy Research Institute, 1999, Republic Of Korea.
[20]  ANSYS Finite Element Analysis Program "thermal and structural Analysis Guide” Version 11.
[21]  SOLIDWORKS code de design industrial, Version 7.