International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2020, 8(4), 134-146
DOI: 10.12691/ijp-8-4-4
Open AccessArticle

An Approach to an Element of Order Number Zero in the Periodic System

T. G.M. Gerlitz1, and W. Walden1

1Department of Computer Sciences, Technological University of Panama, Panama, Republic of Panama

Pub. Date: November 05, 2020

Cite this paper:
T. G.M. Gerlitz and W. Walden. An Approach to an Element of Order Number Zero in the Periodic System. International Journal of Physics. 2020; 8(4):134-146. doi: 10.12691/ijp-8-4-4

Abstract

The question for anti-particles is one of the most outstandingly difficult problems in physics. There were many successful attempts from researchers including models to find a suitable explanation for anti-matter appearing in atom and matter theory. Some examples show really to demonstrate anti-matter character as it reveals the Dirac´s quantum mechanical formalism. Indeed, a series of those atoms are found by experiment. In addition some exotic sounding ones are theoretically predicted and proven by experiment as it is the Positronium. This atom is formed by an electron and a positron and seams really to represented particle and co-particle in one so that it can be considered its own anti-particle itself. Obviously, this construct besides other ideas can meet the requirement of negative states predicted by Dirac as it finally led to the discovery of the positron as well many decades ago. The consideration of negative states in atom physics and the aspect to involve that phenomena into the description of particles could also lead to an extension in the chemical periodic system similarly to arrive at boardering edges those could limit the chemical elements at one side by the Feynmanium and on the other a Positronium. In addition, this research is one of the main goals in elementary physics as it opens a way for interpretation of the Dirac´s equation allowing or even demanding for negative states. Although, particles negative in electric charge or atoms reversed in the charges of nucleus and the surrounding electric clouds, respectively, still demonstrate positive in mass. As a consequence it stands the question wheather and how this requirement can be overcome to entirely obey the demands for negative states, because the mass in all those investigations remains positive and every atom found consists of real and positive matter. However, those suggestions are missing. The aim of the present study is to propose a model that becomes suitable to consider those facts, especially not to ignore a mass negative. In this investigation a theory is tried in a simple model that considers both states of matter together to arrive at an atomic system consisting of an electromagnetic wave. Since electromagnetic waves are that way a true phenomena as they do not appear in a rest-mass differing from zero and there are also no electric or magnetic interaction either, the simplest form of an atom is proposed in the result of a pure electromagnetic wave alone.

Keywords:
classical electrodynamics classical mechanics special relativity general relativity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Antropoff, A. von. Eine neue Form des periodischen Systems der Elementen. Z. Ang. Chem. 39 (1926) 722-725.
 
[2]  Stewart, P. J. A century on from Dmitrij Mendeleev: Tables and spirals, noble gases and Novel prizes. Found. Chem. 9 (2007). 235-245.
 
[3]  Mohorovičić, S. Moeglichkeit neuer Elemente und ihre Bedeutung fur die Astrophysik. Astronomische Nachrichten 253 (1934) 93-108.
 
[4]  Ruark, A.E. Positronium. Physical Review, Letter to the Editor 68 (1945) p. 278.
 
[5]  Wheeler, J. A. Polyelectrons. Annals of the New York Academy of Sciences 48 (1946) 219-238.
 
[6]  Deutsch, M. Evidence for the formation of Positronium in gases. Phys. Rev. 82 (1951) 34-37.
 
[7]  Karshenboim, S. G. Precision Study of Positronium: Testing Bound State QED Theory. Int. J. Mod. Phys. A 19 (2003) 3879-3896.
 
[8]  Mills, A. P. Jr. Observation of the positronium negative ion, Phys. Rev. Lett. 46 (1981) 717-720.
 
[9]  Ray, H. Recent interests on positron (e+ ), positronium (Ps) and antihydrogen (H). Nat. Sci. 5 (2014) 42-47.
 
[10]  Rubbia, A. Positronium as a probe for new physics beyond the standard model. Int. J. Mod. Phys. A 19 (2004) 3961-3985.
 
[11]  Al-Ramadhan, A. H., Gidley, D. W. New precision measurement of the decay rate of singlet positronium. Phys. Rev. Lett. 72 (1994) 1632-1635.
 
[12]  Hylleraas, E.A.; Ore, A. Binding energy of positronium molecule. Phys. Rev. 71 (1947) 493-496.
 
[13]  Usukura, J., Varga, K., Suzuki, Y. Signature of the existence of positronium molecule, Phys. Rev. A 58 (1998) 1918-1931.
 
[14]  Maxwell, J. C. A Dynamical Theory of the Electromagnetic Field. Philosphical Transactions of the Royal Society of London 155 (1865) 459-512.
 
[15]  Newton, I. Principia Mathematica Philosophie Naturalis (1686). (Reprinted by University of California Press, Berkeley, California, 1934).
 
[16]  Huygens, C. Traité de la lumière. (completed in 1978). Pierre van der AA (ed.) (1690).
 
[17]  Planck, M. K. E. L. Ueber irreversible Strahlungsvorgaenge. Sitzungsberichte der Koeniglich preußischen Akademie der Wissenschaften zu Berlin. Erster Halbband. Berlin: Verl. d. Kgl. Akad. d. Wiss (1899) 479-480.
 
[18]  Planck, M. K. E. L. Zur Theorie des Gestzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen physikalischen Gesellschaft 2, 17 (1990) 237-245.
 
[19]  Einstein, A. Ueber einen die Erzeugung und Verwendung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17 (1905a) 132-148.
 
[20]  Einstein, A. Zur Elektrodynamik bewegter Koerper. Annalen der Physik 17 (1905b) 891-921.
 
[21]  Einstein, A. Ueber die Entwicklung unserer Anschauungen ueber das Wesen und die Konstitution der Strahlung, Phys. Z. 10 (1909) 817-825.
 
[22]  Compton, A. H. A Quantum Theory of the Scattering of X-rays by Light Elements. Phys. Rev. 21 (1923) 483-502.
 
[23]  Ioffe, A. F. Zur Theorie der Strahlungserscheinungen. Ann. Phys. 36 (1911) 534-552.
 
[24]  Dobronravov, N. I. (1911) Unpublished. In: Landa, P. S. Nonlinear Oscillations and Waves in Dynamical Systems. Springer Science & Business Media (2013) pp. 273.
 
[25]  De Broglie, L. V. Ondes et Quanta. Compt. Ren. 177 (1923b) 507-509.
 
[26]  De Broglie, L. V. Rayonnement noir et quanta de lumière. Journal de Physique et le Radium 3 (1922a) 422-428.
 
[27]  De Broglie, L. V. Sur les interférence et la théorie de quanta de lumière. Compt. Ren. 175 (1922b) 811-813.
 
[28]  De Broglie, L. V. Recheres sur la theorie des quanta. Ph. D. Thesis. Faculté des Sciences, Université de la Sorbonne, Paris (1923a).
 
[29]  Einstein, A. Ist die Traegheit eines Koerpers von seinem Energiegehalt abhaengig? Annalen der Physik 18 (1905c) 639-641.
 
[30]  Heisenberg, W, K. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen Z. Phys. 83 (1925) 879-893.
 
[31]  Dirac, P. A. M. The Quantum Theory of the Electron. Proc. Roy. Soc. A 117 (1928a) 610-624.
 
[32]  Dirac, P. A. M. The Quantum Theory of the Electron. Part II. Proc. Roy. Soc. London A 118 (1928b) 351-3611.
 
[33]  Anderson, C. D. The positive electron, Phys. Rev. A 43 (1933) 491-494.
 
[34]  Stueckelberg von Breidenbach, E. C. G.The Interpretation of the Positron as a positive Energy Electron traveling backward in time. Helvetica Physica Acta 14 (1941) 51-80.
 
[35]  Barbara, G.L. Second CERN group produces cold atoms of antihydrogen. Search and Discovery. Physics Today (2003) 14-16.
 
[36]  Hijmans, T.W. Particle physics: Cold antihydrogen, News and Views. Nature 419 (2002). 439-440.
 
[37]  Walz, J.; Haensch, T. A proposal to measure antimatter gravity using Ultracold Antihydrogen atoms. Fund. Phys. on the ISS 36 (2004) 561-570.
 
[38]  Walz, J.; Fendel, P.; Herrmann, M.; Koenig, M.; Pahl, A.; Pittner, H.; Schatz, B.; Haensch, T.W. Towards laser spectroscopy of antihydrogen. J. Phys. B 36 (2003) p. 649.
 
[39]  Darrigol, O. The Origin of Quantized Matter Waves. Historical Studies in the Physical and Biological Sciences 16 (1986) 197-253. p. 243.
 
[40]  Weyl, H. K. H. The Theory of Groups and Quantum Mechanics. (Second revised edition). Translated by H. P. Robertson. Mineola: Dover (1932) p. 263.
 
[41]  Schwabl, F. Quantenmechanik fuer Fortgeschrittene (QM II), 5-th ed. Springer, Berlin & Heidelberg, 2008.
 
[42]  Schroedinger, E. R. J. A. Quantisierung als Eigenwertproblem. Annalen der Physik 79 (1926) 361, 489, 734.
 
[43]  Fock, V. A. On the invariant form of the wave and motion equations for a charged point mass. Z. Phys. 12 (1923) 13-18.
 
[44]  Fock, V. A. Zur Schroedingerschen Wellenmechanik. Z. Phys. 38 (1926a) 242-247.
 
[45]  Fock, V. A. Ueber die invariante Form der Wellen- und Bewegungsgleichungen fuer eien geladenen Massenpunkt. Z. Phys. 39 (1926b). 839-841.
 
[46]  Gordon, W. Der Comptoneffekt nach der Schroedingerschen Theorie. Z. Phys. 40 (1926) 117-133.
 
[47]  Klein, O. Quantentheorie und fuenfdimensionale Relativitaetstheorie. Z. Phys. 37 (1926) 895-906.
 
[48]  Klein, O. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. 53 (1929a) 157-165
 
[49]  Klein, O.; Nishina, Y. Ueber die Streuung durch freie Elektronen nach der neuen relativistischen Quantenmechanik von Dirac. Z. Phys. 52 (1929b) 853-868.
 
[50]  Kudar, J. Letter Bohr to Kudar (1929). In: Peierls, R. (ed.) Nuclear Physics 1929-1952. Elsevier, North Holland. p. 605.
 
[51]  Kudar, J. Vierdimensionale Formulierung der undulatorischen Mechanik. Ann. Phys. 81 (1926b) 632-636.
 
[52]  Kudar, J. Zur Quantentheorie der Dublettspektren und ihrer anomalen Zeemaneffekte. Z. Phys. 35 (1926a) 888-893.
 
[53]  Gordon, W. Zur Lichtfortpflanzung nach der Relativitaetstheorie. Annalen der Phys. 377 (1923) 421-456.
 
[54]  Sokolow, A. A.; Loskutow, J. M.; Temow, I. M. Quantenmechanik. Akademie-Verlag, Berlin (1964).
 
[55]  Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics, Vol. 2. Wiley.Interscience, New York, N. Y. (1978).
 
[56]  Sommerfeld, A.; Maue, A. W. Verfahren zur naeherungsweisen Anpassung einer Loesung der Schroedinger- and die Diracgleichung. Annalen der Physik 114 (1935) 629-642.
 
[57]  Schroedinger, E. R. J. A.; Dirac, P. A. M. Theory of Electrons and Positrons. Nobel Lecture, December 12, 1933. Nobel Lectures, Physics 1922-1941. Elsevier Publishing Company, Amsterdam (1965).
 
[58]  Bohr, N. On the constitution of Atoms and Molecules, Part I. Philosophical Magazine 26 (1913) 1-24.
 
[59]  Bohr, N. Über die Anwendung der Quantentheorie auf den Atombau. Z. Physik 13 (1923) 117-165.
 
[60]  Sommerfeld, A. Zur Quantentheorie der Spektrallinien. Annalen der Physik. 51 (1916) 1-94, 125 167.
 
[61]  Amsler, C. et. al. (Particle Data Group). Phys. Lett. B 667 (2008) 1-6.
 
[62]  Chibisov, G. V. Astrophysical upper limits on the photon rest mass. Soviet Physics Uspekhi. 19 (1976) 624-626.
 
[63]  Adelberger, E., Dvali, G., Gruzinov, A. Photon-Mass Bound Destroyed by Vortices. Phys. Rev. Lett. 98 (2007) 2019-1028.
 
[64]  Pound, R.; Rebka, G. Apparent Weight of Photons. Phys. Rev. Lett. 4 (1960) 337-341.
 
[65]  Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 7 (1936) 347-353.
 
[66]  Einstein, A. Ueber das Relativitaetsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivitaet und Elektronik IV (1908) 411-462.
 
[67]  Einstein, A. Ueber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik 35 (1911) 898-908.
 
[68]  Hilbert, D. Die Grundlagen der Physik. Koenigliche Gesellschaft der Wissenschaften zu Goettingen, Mathematisch-Physikalische Klasse, Nachrichten (1915) 395-407.
 
[69]  Schwarzschild, K. Letter from K. Schwarzschild to A. Einstein dated 22 December 1915. The Collected Papers of Albert Einstein 8 A, The Berlin Years: Correspondence, 1014-1918, doc 169. Schulmann, R; Kox, A. J.; Jannssen, M.; Illy J. (eds.) Hebrew University of Jerusalem and the Princeton University Press (1997).
 
[70]  Schwarzschild, K. Ueber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Koeniglich Preussischen Akademie der Wissenschaften zu Berlin 1 (1916) 189-196.
 
[71]  Tolman, R. C. Relativity, Thermodynamics and Cosmology. Clarendon Press, Oxford (1934).
 
[72]  Tolman, R. C.; Ehrenfest, P.; Podolsky, B. On the Gravitational Field Produced by Light. Phys. Rev. 37 (1931) 602-607.
 
[73]  Wheeler, J. A. Geometrodynamics. Academic Press, New York (1962).
 
[74]  Eddington, A. S. Mathematical Therory of Relativity. Cambridge UP (1922).
 
[75]  Buchdahl, H. A. Isotropic coordinates and Schwarzschild metric. Int. J. Theoretical Physics 24 (1985) 731-739.
 
[76]  Gerlitz, T. G. M. Superluminality and Finite Potential Light-Barrier Crossing. Int. J. of Research in Pure and Applied Physics 5 (2015a) 19-24.
 
[77]  Gerlitz, T. G. M. The Mysterious Finestucture Constant α in Quantum Mechanics. Advanced Engineering and Applied Sciences: An International Journal. 5 (2015b) 79-82.
 
[78]  Scerri, E. R. The exclusion principle, chemistry and hidden variables. Synthese. 102 (1995) 165-169.
 
[79]  Wald, R. M. General Relativity. University of Chicago Press (1984).
 
[80]  Schweber, S. An Introduction to Relativistic Quantum Field Theory.Row, Peterson and Company, Elmsford, New York (1961).
 
[81]  Copperstock, F. I.; Faraoni, V. The gravitational interaction of light. Class. Quant. Grav. 10 (1993) 1189-1204.
 
[82]  Beth, R. Mechanical Detection and Measurement of the Angular Momentum of Light. Phys. Rev. 50 (1936) 115-125.
 
[83]  Fierz M.; Pauli, W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. A 173 (1939) 211-232.
 
[84]  Fierz, M. Ueber die relativistische Theorie kraeftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta 12 (1939) 3-12.
 
[85]  Goodmit S.; Kronig, R. de Laer. Ersetzen der Hypothese von unmechanischem Zwang durch eine Forderung bezueglich de inneren Verhaltens jedes einzelnen Elektrons. Verhandelingen kroninklijke Akademie van Wetenschappen 34 (1925b) 278-281.
 
[86]  Goodsmit, S; Kronig, R. de Laer. Ersetzen der Hypothese von unmechanischem Zwang durch eine Forderung bezueglich de inneren Verhaltens jedes einzelnen Elektrons. Naturwissenschaften 13 (1925a) 953-955.
 
[87]  Kronig, R. de Laer. In: Pais, A. (ed.) Pauli´s letter to the Tuebingen meeting, 1924. Inward Bound Clarenton Press (1986).
 
[88]  Pauli,W., Jr. Ueber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31 (1925) 765-778
 
[89]  Pauli, W., Jr. Ueber das Wasserstoffepektrum vom Standpunkt der neuen Quantenmechanik. Z. Physik 36 (1926) 336-363.
 
[90]  Pauli, W., Jr. Fuenf Arbeiten zum Ausschliessungsprinzip und zum Neutrino. Neudruck, Wissenschaftliche Buchgesellschaft, Darmstadt (1977).
 
[91]  Bjorken, J. D.; Drell, S. D. Relativistic Quantum Fields. McGraw-Hill, New York (1965).
 
[92]  Bjorken, J. D.; Drell, S. D. Relativistic Quantum Mechanics. McGraw-Hill, New York (1964).
 
[93]  Dirac, P. A. M. A Theory of Electrons and Protons. Proc. Roy. Soc. London A 801 (1930a) 360-365.
 
[94]  Dirac, P. A. M. The Principles of Quantum Mechanics. Oxford University Press (1930b).
 
[95]  Feynman, R. P. Quantumelectrodynamics. Oldenbourgh, 4-th ed. (1997).
 
[96]  Hawking, S. Eine kurze Geschichte der Zeit. Rowohlt (1998) 185 pp.
 
[97]  Dirac, P. A. M. Proc. Quantised Singularities in the Electromagnetic Field. Roy. Soc. London A 133 (1931) 60-72.
 
[98]  Kerr, R. P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 11 (1963) 237-238.
 
[99]  De Sabbata, V.; Sivaram, C. Strong Spin-Torsion Interaction between Spinning Protons. Nuovo Cimento 101 A (1989) 273-283.
 
[100]  Weyl, H. K. H. Elektron und Gravitation. I. Z. Phys. 56 (1929) 330-352.
 
[101]  Dufour, J. Very sizeable increase of gravity at pico-meter distance: a novel working hypothesis to explain anomalous heat effects and apparent transmutations in certain metal hydrogen systems. J. of condensed matter nuclear science 1 (2007) 47-61.
 
[102]  Raut, U.; Shina, K. P. Strong gravity and the fine structure constant. Proc. Ind. Acad. Sci. 49 (1983) 352-358.
 
[103]  Sivaram, C.; Sinha, K. P. Strong gravity, black holes, and hadrons. Phys. Rev. D 16 (1977) 1975-1978.
 
[104]  Salam, A.; Sivaram, C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett. A 8 (1993) 312-326.
 
[105]  Seshavatharam, U. V. S.; Lakshminarayana, S. Strong nuclear gravitational constant and the origin of nuclear planck scale. Prog. Phys. 11 (2010a) 31-38.
 
[106]  Fedosin S. G. Model of Gravitational Interaction in the Concept of Gravitations. Journal of Vectorial Relativity 4 (2009) 1-24.
 
[107]  Fedosin S. G. The gravitation field as the source of mass and gravitational force in the modernized Le Sage´s model. Phys. Sci. Int. J. 8 (2015) 1-18.
 
[108]  Yukawa., H. On the interaction of elementary particles. Proc. Phys.-Math. Soc. Japan 17 (1935) 48-57.
 
[109]  Perng, J. J. Strong gravitation and elementary particles. Nuovo Cimento Lett. 2 23 (1978) 552-554.
 
[110]  Recami, E.; Zanchin, Tonin; Del Popolo, A.; Gambera. The strong coupling constant. Heavy Ion Physics 10 (1999) 345-349.
 
[111]  Seshavatharam, U. V. S.; Lakshminarayana, S. Super symmetry in strong and weak interactions. Int. J. Mod. Phys. E 2 (2010b) 263-280.