International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2020, 8(3), 90-104
DOI: 10.12691/ijp-8-3-2
Open AccessReview Article

Gravity: WEP, Gauge Theory, Quantization, Unification

Hui Peng,

Pub. Date: August 25, 2020

Cite this paper:
Hui Peng. Gravity: WEP, Gauge Theory, Quantization, Unification. International Journal of Physics. 2020; 8(3):90-104. doi: 10.12691/ijp-8-3-2


A gauge theory of gravity with an internal symmetry U(1), denoted as Gravito-dynamics, is established, which is dual to the Electrodynamics and complies with Special Relativity. The Gravito-dynamics is quantized and renormalized, denoted as QGD. The Gravito-dynamics is unified with Electrodynamics at classical level, and QGD is unified with QED at quantum level, denoted as Electro-gravity interaction. Following the line of generalizing the U(1) Electrodynamics to Yang-Mills theory, we generalize the U(1) gravity to SU(2) gravity that indicates short-range gravity. Two thought-experiments are proposed to test the underlying physics of the U(1) gravity and to detect the particle nature of gravitational wave that leads to wave-particle duality of gravitational radiation.

gravity WEP gauge theory quantization renormalization unification duality short-range gravity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Einstein, A., “Is There a Gravitational Effect which is analogous to Electrodynamic induction?” Viertelj. Gerich. Medizin, 44, pp37-40, 1912.
[2]  Calaprice, A., Kennefick, D. J. and Schulmann, R., Science, 2015.
[3]  Nobili, A. M., et al, Am. J. Phys., 81, 527, 2013.
[4]  Cho, A., Science, 347, 1096-1097, 2015.
[5]  Thorne, K. S. and Blandford, R. D., Modern Classical Physics (Princeton: Princeton Univ. Press), 2015.
[6]  Wagner, T. A., et al, Class. Quantum Grav., 29, 184002, 2012.
[7]  Comandi, G. L., et al, “Galileo Galilei (GG)” on the Ground-GGG: experimental results and perspectives. Phys. Lett., A318, 213-222, 2013.
[8]  Amole, C., et al (ALPHA Collaboration), An experiment limit on the charge of antihydrogen. Nature Communications, 5, 3955, 2013.
[9]  Peng, H., Peng, Y. and Wang, K. S., Violation of Universality of Free Fall by Fast-moving Test Bodies, Open Science Repository,, 2015.
[10]  Peng, H., Gauge/Gravity Duality and Short-Range Gravity, Open-Science-Repository,, 2017.
[11]  Borodikhin, V. N., Vector Theory of Gravity, arXiv:0802.2381v2 [gr-qc], 2011.
[12]  Dayson, F., Int. J. Mod. Phys., A 28, 1330041, 2013.
[13]  Peng, H., and Wang, K., “Wave-Particle Duality of Gravitational Wave and Designed Experiment”, open-science-repository.comdoi:10.7392/openaccess.45011851, 2016.
[14]  Rovelli, C., arXiv:gr-qc/0006061v3, 23, 2001.
[15]  Eichhorn, A. and Gies, H., New J. Phys., 13,125012, 2011.
[16]  Hossenfelder, S., Phys. Lett. B725 473-476, 2013.
[17]  Cao, T. Y., Studies in the History and Philosophy of Modern Physics, 32B, will be published in 2021.
[18]  Amelino-Camelia, G., et al, Second Award from the Gravity Research Foundation 2015 Awards for Essays on Gravitation.
[19]  Peng, H., Peng, Y. and Wang, K, doi:10.7392/openaccess.45011848, 2015.
[20]  t’Hooft, G., Nucl. Phys., 33 173, 1971.
[21]  Giulini, D. and Grobardt, A., Centre-of-mass motion in multi-particle Schrödinger-Newton dynamics, New J. Phys., 16 075005, 2014.
[22]  Anastopoulos, A. and Hu, B. L., Problems with the Newton-Schro dinger Equations, New J. Phys., 16 085007, 2014.
[23]  Peng, H., “A Dynamic Model of Accelerated Expansion of Universe”, Open Science Repository, doi:10.7392/openaccess.45011849, 2016.
[24]  Riess, A. G., “A 2.4% Determination of the Local Value of the Hubble Constant”, arXiv:1604.01424v3 [astro-ph.CO], 2016.
[25]  Peng, H., Gravity, ISBN: 9798664527612, 2020.
[26]  Murata, J. and Tanaka, S., “Review of short-range gravity experiments in the LHC era”, arXiv:1408.3588v2, 2014.
[27]  Kostelecky, V. and Mewes, M., “Testing local Lorentz invariance with short-range gravity”, arXiv:1611.10313v1, 2016.
[28]  Everitt, C. W. F., et al, Class. Quantum Grav. 32 224001, 2015.