International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2020, 8(2), 48-63
DOI: 10.12691/ijp-8-2-3
Open AccessArticle

A Quantum Scalar-Vector-Spinor Model as Vortex-Field Theory for Approaching Physical Unification without Dark Sectors

Fred Y. Ye1,

1European Academy of Sciences and Arts; International Joint Informatics Laboratory (IJIL), Nanjing University, University of Illinois, Nanjing -Champaign, China - USA

Pub. Date: June 12, 2020

Cite this paper:
Fred Y. Ye. A Quantum Scalar-Vector-Spinor Model as Vortex-Field Theory for Approaching Physical Unification without Dark Sectors. International Journal of Physics. 2020; 8(2):48-63. doi: 10.12691/ijp-8-2-3

Abstract

The basic mathematical cliffs (scalar, vector, spinor) and the basic physical measures (mass-energy, wave-momentum, spin-information) are applied as logic foundations and linked as basic equations. While the local scalar-vector-spinor relations among mathematical cliffs and physical measures described electroweak and strong interactions, the global mathematical-physical equations interpreted gravity and repulsion, where a quantum scalar-vector-spinor (SVS) model approaches physical unification without dark sectors. Locally, Maxwell equations and Yang-Mills Fields are naturally included. Globally, Einstein-Friedmann equations characterize the total distribution of energy-momentum in space-time. A modified gravity explains ‘dark matter’ and a scalar energy with phase transitions produces ‘dark energy’. It is suggested to maintain three core principles as fundamental principles in physics, i.e. the action principle (Hamilton principle) which determines the dynamic mechanism of physical processes, the duality principle (Heisenberg principle) which produces quantum effects, and the equivalence principle (Einstein principle) which explains universal equilibrium. The verifications and developments are discussed, where three kinds of Higgs are expected, with predicting heavier Higgs around 17.58TeV and lighter Higgs around 233.7MeV, and the cosmological constant problem is naturally solved. While Newton and Einstein theories are included, the vortex-field theory balances mathematical structure and physical essence with combining micro-world and macro-universe as well.

Keywords:
standard model quantum SVS model vortex-field theorycosmological constant dark matter dark energy physical unification

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 1916, 49, 769-822. English translation: The foundation of the general theory of relativity. in The Principle of Relativity, 111-164.New York: Dover, 1952.
 
[2]  Tanabashi, M. et al. (Particle Data Group). Review of Particle Physics (RPP), Physical Review, 2018, D98, 030001.
 
[3]  Matarrese, S.; Colpi, M.; Gorini, V. et al. Dark Matter and Dark Energy: A Challenge for Modern Cosmology. Dordtrecht: Springer, 2011.
 
[4]  Ellis, J. Dark Matter and Dark Energy: Summary and Future Directions. 2003, arXiv: astro-ph/0304183.
 
[5]  Ballesteros, G.; Redondo, J.; Ringwald, A. et al. Unifying inflation with the axion, dark Matter, baryogenesis, and the seesaw mechanism. Physical Review Letters, 2017, 118, 071802.
 
[6]  Baudis, L. Dark matter detection. Journal of Physics G: Nuclear and Particle Physics, 2016, 43(4), 044001.
 
[7]  Riess, A. G.; Filippenko, A. V.; Challis, P. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 1998, 116(3), 1009-1038.
 
[8]  Perlmutter, S.; Aldering, G.; Goldhaber, G. et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 1999, 517 (2), 565-586.
 
[9]  Planck Collaboration (Ade, P. A. R. et al.). Planck 2013 results. I. Overview of products and scientific results. Astronomy & Astrophysics, 2014, 571, A1.
 
[10]  Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astronomy & Astrophysics, 2014, 571, A16.
 
[11]  Witten, E. String theory dynamics in various dimensions. Nuclear Physics, 1995, B443, 85-126.
 
[12]  Seiberg, N. & Witten, E. String Theory and Noncommutative Geometry. JHEP, 1999, 09, 032.
 
[13]  Becker, K.; Becker, M. & Schwarz, J.H. String Theory and M-theory: A Modern Introduction. Cambridge: Cambridge University Press, 2007.
 
[14]  Rovelli, C. Quantum Gravity. Cambridge: Cambridge University Press, 2004.
 
[15]  Ambjorn, J; Jurkiewicz, J. & Loll, R. The Universe from Scratch. Contemporary Physics, 2006, 47(2), 103-117.
 
[16]  Ashtekar, A. & Lewandowski, J. Background independent quantum gravity: a status report. Classical and Quantum Gravity, 2004, 21, R53-R152.
 
[17]  Mielczarek, J. & Trzesniewski, T. Towards the map of quantum gravity. General Relativity and Gravitation, 2018, 50, 68.
 
[18]  Addazi, A. & Marciano, A. A new duality between topological M-theory and loop quantum gravity. Science China - Physics, Mechanics & Astronomy, 2018, 61(12), 120421.
 
[19]  Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 1983, 270, 365-370.
 
[20]  Sanders, R. H. A stratified framework for scalar-tensor theories of modified dynamics. Astrophysical Journal, 1997, 480(2), 492-502.
 
[21]  Sanders, R. H. A tensor-vector-scalar framework for modified dynamics and cosmic dark matter. Monthly Notices of the Royal Astronomical Society, 2005, 363(2), 459-468.
 
[22]  Bekenstein, J. D. Relativistic gravitation hypothesis for the modified Newtonian dynamics paradigm. Physical Review D, 2004, 70, 083509.
 
[23]  Bekenstein, J. D. Tensor-vector-scalar-modified gravity: from small scale to cosmology. Philosophical Transactions of the Royal Society, 2011, A 369, 5003-5017.
 
[24]  Moffat, J. W. Scalar-tensor-vector gravity theory. Journal of Cosmology and Astroparticle Physics, 2006, 3, 004(1-18).
 
[25]  Penrose, R. The Road to Reality: a complete guide to the laws of the universe. London: Jonathan Cape, 2004.
 
[26]  Wu, Y.-L. Hyperunified field theory and gravitational gauge-geometry duality. European Physical Journal C, 2018, 78, 28.
 
[27]  Straumann, N. Cosmological phase transitions. 2004, arXiv: astro-ph/0409042v2.
 
[28]  Ye, F. Y. A vortex mechanism linking micro-particles to macro-galaxy without supersymmetry. Scientific Metrics: towards analytical and quantitative sciences. Springer, 2017, 57-72.
 
[29]  Ye, F. Y. A physical philosophy for approaching the true and then the beautiful: principled review on the progress of contemporary physics. Scientific Review, 2019, 5(9), 163-172.
 
[30]  Ye, F.Y. A mathematical principle of quantum mechanism. Journal of Physical Mathematics, 2020, 11(2), 1-5.
 
[31]  Hestenes, D. A unified language for mathematics and physics. In J.S.R. Chisholm and A.K. Common, editors, Clifford Algebras and their Applications in Mathematical Physics (1985), Reidel: Dordrecht, 1986.
 
[32]  Hestenes, D. Spacetime physics with geometric algebra. American Journal of Physics, 2003, 71(6), 691-714.
 
[33]  Cartan, E. The theory of spinors. New York: Dover Publications, Inc. (1981); Paris: Hermann, 1966.
 
[34]  Penrose, R. & Rindler, W. Spinors and space–time vol.1: two-spinor calculus and relativistic fields. Cambridge: Cambridge University Press, 1984.
 
[35]  Carmeli, M. & Malin, S. Theory of Spinors: An Introdution. Singapore: World Scientific Pub. Co. Ltd., 2000.
 
[36]  Dirac, P.A.M. The Principles of Quantum Mechanics (4th ed.), Oxford: Oxford University Press, 1958.
 
[37]  Daviau, C. & Bertrand, J. The standard model of quantum physics in Clifford algebra. World Scientific Pub. Co. Ltd., 2016.
 
[38]  Hamilton, M.J.D. Mathematical Gauge Theory, with applications to the standard model of particle physics. Springer, 2017.
 
[39]  Bennett, C.H. & Shor, P. W. Quantum information theory. IEEE Transactions on Information Theory, 1998, 44, 2724-2742.
 
[40]  Scott, D. & Smoot, G. F. Cosmic microwave background. In Tanabashi, M. et al. (Particle Data Group). Review of Particle Physics. Physical Review, 2018, D98, 03001.
 
[41]  Sarkar, S. Big bang nucleosynthesis and physics beyond the standard model. Reports on Progress in Physics, 1996, 59, 1493–1609.
 
[42]  Fields, B. D. & Sarkar, S. Big-bang nucleosynthesis. In Tanabashi, M. et al. (Particle Data Group). Review of Particle Physics. Physical Review,2018, D98, 03001.
 
[43]  Li, M.; Li, X.-D.; Wang, S. et al. Dark energy. Communications in Theoretical Physics, 2011, 56(3), 525-604.
 
[44]  The ATLAS Collaboration. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 2012, 716, 1-29.
 
[45]  The CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 2012, 716, 30-61.
 
[46]  Langacker, P. The Standard Model and Beyond (2nd ed.). CRC Press, Taylor & Francis Group, 2017.
 
[47]  Lahav, O. & Liddle, A.R. Cosmological parameters. In Tanabashi, M. et al. (Particle Data Group). Review of Particle Physics. Physical Review, 2018, D98, 03001.
 
[48]  Steidel, C.C.; Adelberger, K. L.; Dickinson, M. et al. A large structure of galaxies at redshift ф ~ 3 and its cosmological implications. The Astrophysical Journal, 1998, 492 (2), 428-438.
 
[49]  Pritchard, J. R. & Loeb, A. 21 cm cosmology in the 21st century. Reports on Progress in Physics, 2012, 75, 086901.
 
[50]  Gott, III, J. R.; Juric, M; Schlegel, D. et al. A Map of the Universe. The Astrophysical Journal, 2005, 624, 463-484.
 
[51]  Olive, K. A. and Peacock, J. A. Big-bang cosmology. In Tanabashi, M. et al. (Particle Data Group). Review of Particle Physics. Physical Review, 2018, D98, 03001.
 
[52]  Böhringer, H. & Werner, N. X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Annual Review of Astronomy and Astrophysics, 2010, 18(1-2), 127-196.
 
[53]  Saini, T. D.; Raychaudhury, S.; Sahni, V. et al. Reconstructing the cosmic equation of state from supernova distances. Physical Review Letters, 2000, 85, 1162.