International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: http://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2013, 1(6), 162-170
DOI: 10.12691/ijp-1-6-5
Open AccessArticle

Unified Field Theory and the Hierarchical Universe

Zhiliang Cao1, 2, and Henry Gu Cao3

1Wayne State University, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Deerfield High School, Deerfield

Pub. Date: December 11, 2013

Cite this paper:
Zhiliang Cao and Henry Gu Cao. Unified Field Theory and the Hierarchical Universe. International Journal of Physics. 2013; 1(6):162-170. doi: 10.12691/ijp-1-6-5

Abstract

Everything from the smallest particle to the grand universe is constructed by Torque Grids. The grand structure of the universe is made up of infinite hierarchical Torque Grids; this theory falsifies Big Bang Theory (BBT) and Black Hole Theory. A Torque Grid is 10-25 times smaller than an atom, and our universal Torque Grid size is 4.98 * 1026 m. The Universe is timeless. The configuration of Spiral Arm Galaxy can also be explained by Unified Field Theory.

Keywords:
Unified Field Theory Theory of Everything Black Hole Einstein BBT

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 9

References:

[1]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[2]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[3]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
 
[4]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
 
[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
 
[6]  Aron, Jacob. “Largest structure challenges Einstein's smooth cosmos”. New Scientist. Retrieved 14 January 2013.
 
[7]  “Astronomers discover the largest structure in the universe”. Royal astronomical society. Retrieved 2013-01-13.
 
[8]  Clowes, Roger; Harris; Raghunathan; Campusano; Soechting; Graham; Kathryn A. Harris, Srinivasan Raghunathan, Luis E. Campusano, Ilona K. Söchting and Matthew J. Graham (2012-01-11). “A structure in the early Universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology”. Monthly notices of the royal astronomical society 1211 (4): 6256.
 
[9]  “The Largest Structure in Universe Discovered - Quasar Group 4 Billion Light-Years Wide Challenges Current Cosmology”. Retrieved 14 January 2013.
 
[10]  Prostak, Sergio (11 January 2013). “Universe's Largest Structure Discovered”. scinews.com. Retrieved 15 January 2013.
 
[11]  Yadav, Jaswant; J. S. Bagla and Nishikanta Khandai (25 February 2010). “Fractal dimension as a measure of the scale of homogeneity”. Monthly notices of the Royal Astronomical Society 405 (3): 2009-2015.
 
[12]  Hogg, D.W. et al., (May 2005) “Cosmic Homogeneity Demonstrated with Luminous Red Galaxies”. The Astrophysical Journal 624: 54-58.
 
[13]  Scrimgeour, Morag I. et al., (May 2012) “The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity”. Monthly Notices of the Royal Astronomical Society 425 (1): 116-134.
 
[14]  Nadathur, Seshadri, (July 2013) “Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity”. Monthly Notices of the Royal Astronomical Society in press.
 
[15]  Gott, J. Richard, III et al. (May 2005). “A Map of the Universe”. The Astrophysical Journal 624 (2): 463-484.
 
[16]  Gaite, Jose, Dominguez, Alvaro and Perez-Mercader, Juan (August 1999) “The fractal distribution of galaxies and the transition to homogeneity”. The Astrophysical Journal 522: L5-L8.
 
[17]  Wollack, E.J. (10 December 2010). “Cosmology: The Study of the Universe”. Universe 101: Big Bang Theory. NASA. Archived from the original on 14 May 2011. Retrieved 27 April 2011. “The second section discusses the classic tests of the Big Bang theory that make it so compelling as the likely valid description of our universe.”
 
[18]  “Planck reveals an almost perfect universe”. Planck. ESA. 2013-03-21. Retrieved 2013-03-21.
 
[19]  Staff (21 March 2013). “Planck Reveals An Almost Perfect Universe”. ESA. Retrieved 21 March 2013.
 
[20]  Clavin, W.; Harrington, J.D. (21 March 2013). “Planck Brings Universe Into Sharp Focus”. NASA. Retrieved 21 March 2013.
 
[21]  Overbye, D. (21 March 2013). “An Infant Universe, Born Before We Knew”. New York Times. Retrieved 21 March 2013.
 
[22]  Boyle, A. (21 March 2013). “Planck probe's cosmic 'baby picture' revises universe's vital statistics”. NBC News. Retrieved 21 March 2013.
 
[23]  “How Old is the Universe?”. WMAP - Age of the Universe. NASA. 21 December 2012. Retrieved 2013-01-01.
 
[24]  Komatsu, E.; et al. (2009). “Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation”. Astrophysical Journal Supplement 180 (2): 330.
 
[25]  Menegoni, E.; et al. (2009). “New constraints on variations of the fine structure constant from CMB anisotropies”. Physical Review D 80 (8): 087302.
 
[26]  “Origins: CERN: Ideas: The Big Bang”. The Exploratorium. 2000. Archived from the original on 2 September 2010. Retrieved 3 September 2010.
 
[27]  Keohane, J. (8 November 1997). “Big Bang theory”. Ask an astrophysicist. GSFC/NASA. Archived from the original on 2 September 2010. Retrieved 3 September 2010.
 
[28]  Wright, E.L. (9 May 2009). “What is the evidence for the Big Bang?”. Frequently Asked Questions in Cosmology. UCLA, Division of Astronomy and Astrophysics. Retrieved 16 October 2009.
 
[29]  Gibson, C.H. (2001). “The First Turbulent Mixing and Combustion”. IUTAM Turbulent Mixing and Combustion.
 
[30]  Gibson, C.H. (2001). “Turbulence And Mixing In The Early Universe”.
 
[31]  Gibson, C.H. (2005). “The First Turbulent Combustion”.
 
[32]  Hubble, E. (1929). “A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae”. Proceedings of the of Sciences 15 (3): 168-73.
 
[33]  Kragh, H. (1996). Cosmology and Controversy. Press. p. 318.
 
[34]  Hawking, S.W.; Ellis, G.F.R. (1973). The Large-Scale Structure of Space-Time. Press.
 
[35]  Roos, M. (2008). “Expansion of the Universe - Standard Big Bang Model”. In Engvold, O.; Stabell, R.; Czerny, B. et al. Astronomy and Astrophysics. Encyclopedia of Life Support Systems. UNESCO. “This singularity is termed the Big Bang.”
 
[36]  Drees, W.B. (1990). Beyond the big bang: quantum cosmologies and God. Open Court Publishing. pp. 223-224.
 
[37]  Weinberg, S. (1993). The First Three Minutes: A Modern View Of The Origin Of The Universe. Basic Books. p. [page needed].
 
[38]  Bennett, C.L.; et al. (2013). “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results”.
 
[39]  Guth, A.H. (1998). The Inflationary Universe: Quest for a New Theory of Cosmic Origins. Vintage Books.
 
[40]  Schewe, P. (2005). “An of Quarks”. Physics News Update (American Institute of Physics) 728 (1).
 
[41]  Moskowitz, C. (25 September 2012). “Hubble Telescope Reveals Farthest View Into Universe Ever”. Space.com. Retrieved 26 September 2012.
 
[42]  Spergel, D.N.; et al. (2003). “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters”. Astrophysical Journal Supplement 148 (1): 175.
 
[43]  Jarosik, N.; et al. (WMAP Collaboration) (2011). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. NASA/GSFC. p. 39, Table 8. Retrieved 4 December 2010.
 
[44]  Peebles, P.J.E.; Ratra, B. (2003). “The Cosmological Constant and Dark Energy”. Reviews of Modern Physics 75 (2): 559-606.
 
[45]  Ivanchik, A.V.; Potekhin, A.Y.; Varshalovich, D.A. (1999). “The Fine-Structure Constant: A New Observational Limit on Its Cosmological Variation and Some Theoretical Consequences”. Astronomy and Astrophysics 343: 459.
 
[46]  Goodman, J. (1995). “Geocentrism Reexamined”. Physical Review D 52 (4): 1821.
 
[47]  “'Big bang' astronomer dies”. BBC News. 22 August 2001. Archived from the original on 8 December 2008. Retrieved 7 December 2008.
 
[48]  Mitton, S. (2005). Fred Hoyle: A Life in Science. Aurum Press. p. 127.
 
[49]  Slipher, V.M (1913). “The Radial Velocity of the Andromeda Nebula”. Observatory Bulletin 1: 56-57.
 
[50]  Slipher, V.M (1915). “Spectrographic Observations of Nebulae”. Popular Astronomy 23: 21-24.
 
[51]  Friedman, A. (1999). “On the Curvature of Space”. General Relativity and Gravitation 31 (12): 1991-2000.
 
[52]  Lemaître, G. (1931). “A Homogeneous Universe of Constant Mass and Growing Radius Accounting for the Radial Velocity of Extragalactic Nebulae”. Monthly Notices of the Royal Astronomical Society 91: 483-490.
 
[53]  Lemaître, G. (1931). “The Evolution of the Universe: Discussion”. Nature 128 (3234): 699-701.
 
[54]  Christianson, E. (1995). Edwin Hubble: Mariner of the Nebulae. Farrar, Straus and Giroux.
 
[55]  Kragh, H. (1996). Cosmology and Controversy. Press.
 
[56]  “People and Discoveries: Big Bang Theory”. A Science Odyssey. PBS. Retrieved 9 March 2012.
 
[57]  Eddington, A. (1931). “The End of the World: from the Standpoint of Mathematical Physics”. Nature 127 (3203): 447-453.
 
[58]  Appolloni, S. (2011). ““Repugnant”, “Not Repugnant at All”: How the Respective Epistemic Attitudes of Georges Lemaitre and Sir Arthur Eddington Influenced How Each Approached the Idea of a Beginning of the Universe”. IBSU Scientific Journal 5 (1): 19-44.
 
[59]  Lemaître, G. (1931). “The Beginning of the World from the Point of View of Quantum Theory”. Nature 127 (3210): 706.
 
[60]  Milne, E.A. (1935). Relativity, Gravitation and World Structure. Press.
 
[61]  Tolman, R.C. (1934). Relativity, Thermodynamics, and Cosmology. Clarendon Press.
 
[62]  Zwicky, F. (1929). “On the Red Shift of Spectral Lines through Interstellar Space”. Proceedings of the of Sciences 15 (10): 773-779.
 
[63]  Hoyle, F. (1948). “A New Model for the Expanding Universe”. Monthly Notices of the Royal Astronomical Society 108: 372.
 
[64]  Alpher, R.A.; Bethe, H.; Gamow, G. (1948). “The Origin of Chemical Elements”. Physical Review 73 (7): 803.
 
[65]  Alpher, R.A.; Herman, R. (1948). “Evolution of the Universe”. Nature 162 (4124): 774.
 
[66]  Singh, S. (21 April 2007). “Big Bang”. SimonSingh.net. Archived from the original on 30 June 2007. Retrieved 28 May 2007.
 
[67]  Croswell, K. (1995). The Alchemy of the Heavens. Anchor Books. chapter 9.
 
[68]  Penzias, A.A.; Wilson, R.W. (1965). “A Measurement of Excess Antenna Temperature at 4080 Mc/s”. Astrophysical Journal 142: 419.
 
[69]  Boggess, N.W.; et al. (1992). “The COBE : Its Design and Performance Two Years after the launch”. Astrophysical Journal 397: 420.
 
[70]  Spergel, D.N.; et al. (2006). “Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology”. Astrophysical Journal Supplement 170 (2): 377.
 
[71]  Krauss, L. (2012). A Universe From Nothing: Why there is Something Rather than Nothing. Free Press. p. 118.
 
[72]  Gladders, M.D.; et al. (2007). “Cosmological Constraints from the Red-Sequence Cluster Survey”. The Astrophysical Journal 655 (1): 128-134.
 
[73]  The Four Pillars of the Standard Cosmology.
 
[74]  Sadoulet, B. (2010). “Direct Searches for Dark Matter”. Astro2010: The Astronomy and Astrophysics Decadal Survey. National Academies Press. Retrieved 12 March 2012.
 
[75]  Cahn, R. (2010). “For a Comprehensive Space-Based Dark Energy Mission”. Astro2010: The Astronomy and Astrophysics Decadal Survey. National Academies Press. Retrieved 12 March 2012.
 
[76]  Srianand, R.; Petitjean, P.; Ledoux, C. (2000). “The microwave background temperature at the redshift of 2.33771”. Nature 408 (6815): 931-935. Lay summary - European Southern Observatory (December 2000).
 
[77]  Gannon, M. (21 December 2012). “New 'Baby Picture' of Universe Unveiled”. Space.com. Retrieved 21 December 2012.
 
[78]  Wright, E.L. (2004). “Theoretical Overview of Cosmic Microwave Background Anisotropy”. In W. L. Freedman. Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series. Press. p. 291.
 
[79]  White, M. (1999). “Anisotropies in the CMB”. Proceedings of the Meeting, DPF 99. UCLA.
 
[80]  Steigman, G. (2005). “Primordial Nucleosynthesis: Successes And Challenges”. International Journal of Modern Physics E 15: 1-36.
 
[81]  Bertschinger, E. (2001). “Cosmological Perturbation Theory and Structure Formation”.
 
[82]  Bertschinger, E. (1998). “Simulations of Structure Formation in the Universe”. Annual Review of Astronomy and Astrophysics 36 (1): 599-654.
 
[83]  Fumagalli, M.; O'Meara, J.M.; Prochaska, J.X. (2011). “Detection of Pristine Gas Two Billion Years After the Big Bang”. Science 334 (6060): 1245-9.
 
[84]  “Astronomers Find Clouds of Primordial Gas from the Early Universe, Just Moments After Big Bang”. Science Daily. 10 November 2011. Retrieved 13 November 2011.
 
[85]  Perley, D. (21 February 2005). “Determination of the Universe's Age, to”. of , Astronomy Department. Retrieved 27 January 2012.
 
[86]  Srianand, R.; Noterdaeme, P.; Ledoux, C.; Petitjean, P. (2008). “First detection of CO in a high-redshift damped Lyman-a system”. Astronomy and Astrophysics 482 (3): L39.
 
[87]  Avgoustidis, A.; Luzzi, G.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L. (2011). “Constraints on the CMB temperature-redshift dependence from SZ and distance measurements”.
 
[88]  Belusevic, R. (2008). Relativity, Astrophysics and Cosmology. Wiley-VCH. p. 16.
 
[89]  Sakharov, A.D. (1967). “Violation of CP Invariance, C Asymmetry and Baryon Asymmetry of the Universe”. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, Pisma 5: 32. (Russian) (Translated in Journal of Experimental and Theoretical Physics Letters 5, 24 (1967).)
 
[90]  Keel, B. (October 2009). “Dark Matter”. Retrieved 24 July 2013.
 
[91]  , W. M.; et al. (2006). “Review of Particle Physics: Dark Matter”. Journal of Physics G 33 (1): 1-1232.
 
[92]  Navabi, A.A.; Riazi, N. (2003). “Is the Age Problem Resolved?”. Journal of Astrophysics and Astronomy 24 (1-2): 3.
 
[93]  Penrose, R. (1979). “Singularities and Time-Asymmetry”. In Hawking, S.W. (ed); , W. (ed). General Relativity: An Einstein Centenary Survey. Press. pp. 581-638.
 
[94]  Penrose, R. (1989). “Difficulties with Inflationary Cosmology”. In Fergus, E.J. (ed). Proceedings of the 14th Symposium on Relativistic Astrophysics. of Sciences. pp. 249-264.
 
[95]  Dicke, R.H.; Peebles, P.J.E. “The big bang cosmology—enigmas and nostrums”. In Hawking, S.W. (ed); , W. (ed). General Relativity: an Einstein centenary survey. Press. pp. 504-517.
 
[96]  , R.R; Kamionkowski, M.; Weinberg, N. N. (2003). “Phantom Energy and Cosmic Doomsday”. Physical Review Letters 91 (7): 071301.
 
[97]  Hawking, S.W.; Ellis, G.F.R. (1973). The Large Scale Structure of Space-Time. (): Press.
 
[98]  Hartle, J.H.; Hawking, S. (1983). “Wave Function of the Universe”. Physical Review D 28 (12): 2960.
 
[99]  Langlois, D. (2002). “Brane Cosmology: An Introduction”. Progress of Theoretical Physics Supplement 148: 181-212.
 
[100]  Linde, A. (2002). “Inflationary Theory versus Ekpyrotic/Cyclic Scenario”.
 
[101]  Than, K. (2006). “Recycled Universe: Theory Could Solve Cosmic Mystery”. Space.com. Retrieved 3 July 2007.
 
[102]  Kennedy, B.K. (2007). “What Happened Before the Big Bang?”. Archived from the original on 4 July 2007. Retrieved 3 July 2007.
 
[103]  Linde, A. (1986). “Eternal Chaotic Inflation”. Modern Physics Letters A 1 (2): 81.
 
[104]  Linde, A. (1986). “Eternally Existing Self-Reproducing Chaotic Inflationary Universe”. Physics Letters B 175 (4): 395-400.
 
[105]  Harris, J.F. (2002). Analytic philosophy of religion. Springer. p. 128.
 
[106]  Frame, T. (2009). Losing my religion. UNSW Press. pp. 137-141.
 
[107]  Harrison, P. (2010). The Companion to Science and Religion. Press. p. 9.
 
[108]  Sagan, C. (1988). introduction to A Brief History of Time by Stephen Hawking. Bantam Books. pp. X. “... a universe with no edge in space, no beginning or end in time, and nothing for a Creator to do.”
 
[109]  Schutz, Bernard F. (2003). Gravity from the ground up. Press. p. 110.
 
[110]  Davies, P. C. W. (1978). “Thermodynamics of Black Holes”. Reports on Progress in Physics 41 (8): 1313-1355.
 
[111]  Michell, J. (1784). “On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose”. Philosophical Transactions of the Royal Society 74 (0): 35-57.
 
[112]  Gillispie, C. C. (2000). Pierre-Simon Laplace, 1749-1827: a life in exact science. paperbacks. Press. p. 175.
 
[113]  , W. (1989). “Dark stars: the evolution of an idea”. In Hawking, S. W.; , W. 300 Years of Gravitation. Press.
 
[114]  Schwarzschild, K. (1916). “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 7: 189-196. and Schwarzschild, K. (1916). “Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 18: 424-434.
 
[115]  Droste, J. (1917). “On the field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field”. 19 (1): 197-215.
 
[116]  Kox, A. J. (1992). “General Relativity in the : 1915-1920”. In Eisenstaedt, J.; Kox, A. J. Studies in the history of general relativity. Birkhäuser. p. 41.
 
[117]  Venkataraman, G. (1992). Chandrasekhar and his limit. Universities Press. p. 89.
 
[118]  Detweiler, S. (1981). “Resource letter BH-1: Black holes”. American Journal of Physics 49 (5): 394-400.
 
[119]  Harpaz, A. (1994). Stellar evolution. A K Peters. p. 105.
 
[120]  Oppenheimer, J. R.; Volkoff, G. M. (1939). “On Massive Neutron Cores”. Physical Review 55 (4): 374-381.
 
[121]  Ruffini, R.; Wheeler, J. A. (1971). “Introducing the black hole”. Physics Today 24 (1): 30-41.
 
[122]  Finkelstein, D. (1958). “Past-Future Asymmetry of the Gravitational Field of a Point Particle”. Physical Review 110 (4): 965-967.
 
[123]  Kruskal, M. (1960). “Maximal Extension of Schwarzschild Metric”. Physical Review 119 (5): 1743.
 
[124]  Hewish, A. et al. (1968). “Observation of a Rapidly Pulsating Radio Source”. Nature 217 (5130): 709-713.
 
[125]  Pilkington, J. D. H. et al. (1968). “Observations of some further Pulsed Radio Sources”. Nature 218 (5137): 126-129.
 
[126]  Hewish, A. (1970). “Pulsars”. Annual Review of Astronomy and Astrophysics 8 (1): 265-296.
 
[127]  Newman, E. T. et al. (1965). “Metric of a Rotating, Charged Mass”. Journal of Mathematical Physics 6 (6): 918.
 
[128]  , W. (1967). “Event Horizons in Static Vacuum Space-Times”. Physical Review 164 (5): 1776.
 
[129]  Carter, B. (1971). “Axisymmetric Black Hole Has Only Two Degrees of Freedom”. Physical Review Letters 26 (6): 331.
 
[130]  Carter, B. (1977). “The vacuum black hole uniqueness theorem and its conceivable generalisations”. Proceedings of the 1st Marcel Grossmann meeting on general relativity. pp. 243-254.
 
[131]  Robinson, D. (1975). “Uniqueness of the Kerr Black Hole”. Physical Review Letters 34 (14): 905.
 
[132]  Heusler, M. (1998). “Stationary Black Holes: Uniqueness and Beyond”. Living Reviews in Relativity 1 (6). Archived from the original on 1999-02-03. Retrieved 2011-02-08.
 
[133]  Penrose, R. (1965). “Gravitational Collapse and Space-Time Singularities”. Physical Review Letters 14 (3): 57.
 
[134]  Ford, L. H. (2003). “The Classical Singularity Theorems and Their Quantum Loopholes”. International Journal of Theoretical Physics 42 (6): 1219.
 
[135]  Bardeen, J. M.; Carter, B.; Hawking, S. W. (1973). “The four laws of black hole mechanics”. Communications in Mathematical Physics 31 (2): 161-170.
 
[136]  Hawking, S. W. (1974). “Black hole explosions?”. Nature 248 (5443): 30-31.
 
[137]  Quinion, M. (26 April 2008). “Black Hole”. World Wide Words. Retrieved 2008-06-17.
 
[138]  Thorne, K. S.; Price, R. H. (1986). Black holes: the membrane paradigm. Press.
 
[139]  Anderson, Warren G. (1996). “The Black Hole Information Loss Problem”. Usenet Physics FAQ. Retrieved 2009-03-24.
 
[140]  Preskill, J. (1994-10-21). “Black holes and information: A crisis in quantum physics”. Caltech Theory Seminar.
 
[141]  Hawking & Ellis 1973, Appendix B.
 
[142]  Seeds, Michael A.; Backman, Dana E. (2007). Perspectives on Astronomy. Cengage Learning. p. 167.
 
[143]  Shapiro, S. L.; Teukolsky, S. A. (1983). Black holes, white dwarfs, and neutron stars: the physics of compact objects. John Wiley and Sons. p. 357.
 
[144]  Wald, R. M. (1997). “Gravitational Collapse and Cosmic Censorship”.
 
[145]  Berger, B. K. (2002). “Numerical Approaches to Spacetime Singularities”. Living Reviews in Relativity 5: 1. Retrieved 2007-08-04.
 
[146]  McClintock, J. E.; Shafee, R.; Narayan, R.; Remillard, R. A.; Davis, S. W.; Li, L.-X. (2006). “The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105”. Astrophysical Journal 652 (1): 518-539.
 
[147]  Lewis, G. F.; Kwan, J. (2007). “No Way Back: Maximizing Survival Time Below the Schwarzschild Event Horizon”. Publications of the Astronomical Society of 24 (2): 46-52.
 
[148]  Droz, S.; , W.; Morsink, S. M. (1996). “Black holes: the inside story”. Physics World 9 (1): 34-37.
 
[149]  Poisson, E.; , W. (1990). “Internal structure of black holes”. Physical Review D 41 (6): 1796.
 
[150]  Wald 1984, p. 212.
 
[151]  Hamade, R. (1996). “Black Holes and Quantum Gravity”. Relativity and Cosmology. . Retrieved 2009-03-26.
 
[152]  Palmer, D. “Ask an Astrophysicist: Quantum Gravity and Black Holes”. NASA. Retrieved 2009-03-26.
 
[153]  Nitta, Daisuke; , Takeshi; Sugiyama, Naoshi (September 2011). “Shadows of colliding black holes”. Physical Review D 84 (6).
 
[154]  Nemiroff, R. J. (1993). “Visual distortions near a neutron star and black hole”. American Journal of Physics 61 (7): 619.
 
[155]  Einstein, A. (1939). “On A Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses”. Annals of Mathematics 40 (4): 922-936.
 
[156]  Kerr, R. P. (2009). “The Kerr and Kerr-Schild metrics”. In Wiltshire, D. L.; Visser, M.; Scott, S. M. The Kerr Spacetime. Press.
 
[157]  Hawking, S. W.; Penrose, R. (January 1970). “The Singularities of Gravitational Collapse and Cosmology”. Proceedings of the Royal Society A 314 (1519): 529-548.
 
[158]  Rees, M. J.; Volonteri, M. (2007). “Massive black holes: formation and evolution”. In Karas, V.; Matt, G. Black Holes from Stars to Galaxies-Across the . Press. pp. 51-58.
 
[159]  Penrose, R. (2002). “Gravitational Collapse: The Role of General Relativity”. General Relativity and Gravitation 34 (7): 1141.
 
[160]  Carr, B. J. (2005). “Primordial Black Holes: Do They Exist and Are They Useful?”. In Suzuki, H.; Yokoyama, J.; Suto, Y. et al. Inflating Horizon of Particle Astrophysics and Cosmology. Press.
 
[161]  Giddings, S. B.; Thomas, S. (2002). “High energy colliders as black hole factories: The end of short distance physics”. Physical Review D 65 (5): 056010.
 
[162]  Harada, T. (2006). “Is there a black hole minimum mass?”. Physical Review D 74 (8): 084004.
 
[163]  Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. (1998). “The hierarchy problem and new dimensions at a millimeter”. Physics Letters B 429 (3-4): 263.
 
[164]  LHC Safety Assessment Group. “Review of the Safety of LHC Collisions”. CERN.
 
[165]  Cavaglià, M. (2010). “Particle accelerators as black hole factories?”. Einstein-Online (Max Planck Institute for Gravitational Physics (Albert Einstein Institute)) 4: 1010.
 
[166]  Vesperini, E.; McMillan, S. L. W.; d'Ercole, A. et al. (2010). “Intermediate-Mass Black Holes in Early Globular Clusters”. The Astrophysical Journal Letters 713 (1): L41-L44.
 
[167]  Zwart, S. F. P.; Baumgardt, H.; Hut, P. et al. (2004). “Formation of massive black holes through runaway collisions in dense young star clusters”. Nature 428 (6984): 724-6.
 
[168]  O'Leary, R. M.; Rasio, F. A.; Fregeau, J. M. et al. (2006). “Binary Mergers and Growth of Black Holes in Dense Star Clusters”. The Astrophysical Journal 637 (2): 937.
 
[169]  Page, D. N. (2005). “Hawking radiation and black hole thermodynamics”. New Journal of Physics 7: 203.
 
[170]  “Evaporating black holes?”. Einstein online. Max Planck Institute for Gravitational Physics. 2010. Retrieved 2010-12-12.
 
[171]  Giddings, S. B.; Mangano, M. L. (2008). “Astrophysical implications of hypothetical stable TeV-scale black holes”. Physical Review D 78 (3): 035009.
 
[172]  Peskin, M. E. (2008). “The end of the world at the Large Hadron Collider?”. Physics 1: 14.
 
[173]  “Ripped Apart by a Black Hole”. ESO Press Release. Retrieved 19 July 2013.
 
[174]  Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L. et al. (1994). “Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts”. Astrophysical Journal 434 (2): 557-559.
 
[175]  Naeye, R. “Testing Fundamental Physics”. NASA. Retrieved 2008-09-16.
 
[176]  “Event Horizon Telescope”. MIT Haystack Observatory. Retrieved 6 April 2012.
 
[177]  McClintock, J. E.; Remillard, R. A. (2006). “Black Hole Binaries”. In Lewin, W.; van der Klis, M. Compact Stellar X-ray Sources. Press.
 
[178]  Celotti, A.; Miller, J. C.; Sciama, D. W. (1999). “Astrophysical evidence for the existence of black holes”. Classical and Quantum Gravity 16 (12A): A3-A21.
 
[179]  Winter, L. M.; Mushotzky, R. F.; Reynolds, C. S. (2006). “XMM-Newton Archival Study of the Ultraluminous X-Ray Population in Nearby Galaxies”. The Astrophysical Journal 649 (2): 730.
 
[180]  , C. T. (1972). “Identification of Cygnus X-1 with HDE 226868”. Nature 235 (5336): 271-273.
 
[181]  Webster, B. L.; Murdin, P. (1972). “Cygnus X-1-a Spectroscopic Binary with a Heavy Companion ?”. Nature 235 (5332): 37-38.
 
[182]  Rolston, B. (10 November 1997). “The First Black Hole”. The bulletin. . Archived from the original on 2008-05-02. Retrieved 2008-03-11.
 
[183]  Shipman, H. L. (1 January 1975). “The implausible history of triple star models for Cygnus X-1 Evidence for a black hole”. Astrophysical Letters 16 (1): 9-12.
 
[184]  Narayan, R.; McClintock, J. (2008). “Advection-dominated accretion and the black hole event horizon”. New Astronomy Reviews 51 (10-12): 733.
 
[185]  “NASA scientists identify smallest known black hole” (Press release). . 2008-04-01. Retrieved 2009-03-14.
 
[186]  Krolik, J. H. (1999). Active Galactic Nuclei. Press. 1.2.
 
[187]  Sparke, L. S.; Gallagher, J. S. (2000). Galaxies in the Universe: An Introduction. Press. 9.1.
 
[188]  Kormendy, J.; Richstone, D. (1995). “Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei”. Annual Reviews of Astronomy and Astrophysics 33 (1): 581-624.
 
[189]  King, A. (2003). “Black Holes, Galaxy Formation, and the MBH-s Relation”. The Astrophysical Journal Letters 596 (1): 27-29.
 
[190]  Ferrarese, L.; Merritt, D. (2000). “A Fundamental Relation Between Supermassive Black Holes and their Host Galaxies”. The Astrophysical Journal Letters 539 (1): 9-12.
 
[191]  “A Black Hole's Dinner is Fast Approaching”. ESO Press Release. Retrieved 6 February 2012.
 
[192]  Gillessen, S.; Eisenhauer, F.; Trippe, S. et al. (2009). “Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center”. The Astrophysical Journal 692 (2): 1075.
 
[193]  Ghez, A. M.; Klein, B. L.; Morris, M. et al. (1998). “High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy”. The Astrophysical Journal 509 (2): 678.
 
[194]  Bozza, V. (2010). “Gravitational Lensing by Black Holes”. General Relativity and Gravitation 42 (42): 2269-2300.
 
[195]  Barack, L.; Cutler, C. (2004). “LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy”. Physical Review D 69 (69): 082005.
 
[196]  Kovacs, Z.; Cheng, K. S.; Harko, T. (2009). “Can stellar mass black holes be quark stars?”. Monthly Notices of the Royal Astronomical Society 400 (3): 1632-1642.
 
[197]  Kusenko, A. (2006). “Properties and signatures of supersymmetric Q-balls”.
 
[198]  Hansson, J.; Sandin, F. (2005). “Preon stars: a new class of cosmic compact objects”. Physics Letters B 616 (1-2): 1.
 
[199]  Kiefer, C. (2006). “Quantum gravity: general introduction and recent developments”. Annalen der Physik 15 (1-2): 129.
 
[200]  Skenderis, K.; Taylor, M. (2008). “The fuzzball proposal for black holes”. Physics Reports 467 (4-5): 117.
 
[201]  Hawking, S. W. (1971). “Gravitational Radiation from Colliding Black Holes”. Physical Review Letters 26 (21): 1344-1346.
 
[202]  Wald, R. M. (2001). “The Thermodynamics of Black Holes”. Living Reviews in Relativity 4 (6): 12119.
 
[203]  Strominger, A.; Vafa, C. (1996). “Microscopic origin of the Bekenstein-Hawking entropy”. Physics Letters B 379 (1-4): 99.
 
[204]  Carlip, S. (2009). “Black Hole Thermodynamics and Statistical Mechanics”. Lecture Notes in Physics. Lecture Notes in Physics 769: 89.
 
[205]  Hawking, S. W. “Does God Play Dice?”. www.hawking.org.uk. Retrieved 2009-03-14.
 
[206]  Giddings, S. B. (1995). “The black hole information paradox”. Particles, Strings and Cosmology. Johns Workshop on Current Problems in Particle Theory 19 and the PASCOS Interdisciplinary Symposium 5.
 
[207]  Mathur, S. D. (2011). “The information paradox: conflicts and resolutions”. XXV International Symposium on Lepton Photon Interactions at High Energies.
 
[208]  “The generally accepted explanation of the mass discrepancy is the proposal that spiral galaxies consist of a visible component surrounded by a more massive and extensive dark component ..” is stated in the introduction of the article: K.G. Begeman, A.H. Broeils, R.H.Sanders (1991). “Extended rotation curves of spiral galaxies: dark haloes and modified dynamics”. Monthly Notices of the Royal Astronomical Society 249: 523-537.
 
[209]  For an extensive discussion of the data and its fit to MOND see Mordehai Milgrom (2007). “The MOND Paradigm”.
 
[210]  Kuijken K., Gilmore G., 1989a, MNRAS, 239, 651.
 
[211]  Babcock, H, 1939, “The rotation of the Andromeda Nebula”, Lick Observatory bulletin ; no. 498
 
[212]  L. Volders. “Neutral hydrogen in M 33 and M 101”. Bulletin of the Astronomical Institutes of the 14 (492): 323-334.
 
[213]  V. Rubin, W. K. Ford, Jr (1970). “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions”. Astrophysical Journal 159: 379.
 
[214]  A. Bosma, “The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types”, PhD Thesis, Rijksuniversiteit Groningen, 1978, available online at the Nasa Extragalactic Database.
 
[215]  V. Rubin, N. Thonnard, W. K. Ford, Jr, (1980). “Rotational Properties of 21 Sc Galaxies with a Large and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)”. Astrophysical Journal 238: 471.
 
[216]  Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M. (May 10, 1996). “The Structure of Cold Dark Matter Halos”. The Astrophysical Journal 463: 563.
 
[217]  Merritt, David; Graham, Alister; Moore, Benjamin; Diemand, Jurg; Terzic, Balsa (20 December 2006). “Empirical Models for Dark Matter Halos”. The Astronomical Journal 132 (6): 2685-2700.
 
[218]  Merritt, David; et al. (May 2005). “A Universal Density Profile for Dark and Luminous Matter?”. The Astrophysical Journal 624 (2): L85-L88.
 
[219]  Reliance on Indirect Evidence Fuels Dark Matter Doubts: Scientific American
 
[220]  Weinberg, David H.; et, al. (2008). “Baryon Dynamics, Dark Matter Substructure, and Galaxies”. The Astrophysical Journal 678 (1): 6-21.
 
[221]  Duffy, Alan R.; al., et (2010). “Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles”. Monthly Notices of the Royal Astronomical Society 405 (4): 2161-2178.
 
[222]  W. J. G. de Blok, S. McGaugh (1997). “The dark and visible matter content of low surface brightness disc galaxies”. Monthly Notices of the Royal Astronomical Society 290: 533-552.
 
[223]  M. A. Zwaan, J. M. van der Hulst, W. J. G. de Blok, S. McGaugh (1995). “The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution”. Monthly Notices of the Royal Astronomical Society 273: L35-L38.
 
[224]  W. J. G. de Blok, A. Bosma (2002). “High-resolution rotation curves of low surface brightness galaxies”. Astronomy & Astrophysics 385 (3): 816-846.
 
[225]  de Blok, W. G. The Core Cusp Problem. “Dwarf Galaxy Cosmology” special issue of Advances in Astrophysics. 2009. [1].
 
[226]  Peter, Annika H. G. Dark Matter: A Brief Review. Proccedings of Science. 2012.
 
[227]  J. D. Bekenstein (2004). “Relativistic gravitation theory for the modified Newtonian dynamics paradigm”. Physical Review D 70 (8): 083509.
 
[228]  J. W. Moffat (2006). “Scalar tensor vector gravity theory”. Journal of Cosmology and Astroparticle Physics 3 (03): 4.
 
[229]  J. R. Brownstein and J. W. Moffat (2006). “Galaxy Rotation Curves Without Non-Baryonic Dark Matter”. Astrophysical Journal 636 (2): 721.
 
[230]  Chandra Press Room :: Chandra Casts Cloud On Alternative Theory :: October 22, 2002
 
[231]  M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, L. David, W. Forman, C. Jones, S. Murray, and W. Tucker. Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56.
 
[232]  M. Markevitch, S. Randall, D. Clowe, A. Gonzalez and M. Bradac (16-23 July 2006). “Dark Matter and the Bullet Cluster”. 36th COSPAR Scientific Assembly. . abstract only
 
[233]  Smith, J.M.; Van Ness, H.C., Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw Hill.
 
[234]  Haynie, Donald, T. (2001). Biological Thermodynamics. Press.
 
[235]  Crawford, F.H. (1963). Heat, Thermodynamics, and Statistical Physics, Rupert Hart-Davis, London, Harcourt, Brace & World, Inc., pp. 106-107.
 
[236]  Haase, R. (1963/1969). Thermodynamics of Irreversible Processes, translated in English, Addison-Wesley, , pp. 10-11.
 
[237]  Dugdale, J.S. (1998). Entropy and its Physical Meaning. Taylor and Francis.
 
[238]  Clausius, Rudolf (1850). On the Motive Power of Heat, and on the Laws which can be deduced from it for the Theory of Heat. Poggendorff's Annalen der Physik, LXXIX (Dover Reprint).
 
[239]  Sir William Thomson, LL.D. D.C.L., F.R.S. (1882). Mathematical and Physical Papers 1. , : C.J. Clay, M.A. & Son, Press. p. 232.
 
[240]  Hess, H. (1840). Thermochemische Untersuchungen, Annalen der Physik und Chemie (Poggendorff, ) 126(6): 385-404.
 
[241]  Gibbs, Willard, J. (1876). Transactions of the Connecticut Academy, III, pp. 108-248, Oct. 1875 - May 1876, and pp. 343-524, May 1877 - July 1878.
 
[242]  Duhem, P.M.M. (1886). Le Potential Thermodynamique et ses Applications, Hermann, Paris.
 
[243]  Lewis, Gilbert N.; Randall, Merle (1923). Thermodynamics and the Free Energy of Chemical Substances. McGraw-Hill Book Co. Inc.
 
[244]  Guggenheim, E.A. (1933). Modern Thermodynamics by the Methods of J.W. Gibbs, , .
 
[245]  Ilya Prigogine, I. & Defay, R., translated by D.H. Everett (1954). Chemical Thermodynamics. Longmans, Green & Co., . Includes classical non-equilibrium thermodynamics.