International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: http://www.sciepub.com/journal/ijebb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
International Journal of Environmental Bioremediation & Biodegradation. 2018, 6(1), 26-35
DOI: 10.12691/ijebb-6-1-4
Open AccessArticle

Bioremediation of Landfill Leachate Using Isolated Bacterial Strains

Sinead Morris1, , Guiomar Garcia-Cabellos1, Deirdre Enright2, David Ryan1 and Anne-Marie Enright1

1EnviroCore, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland

2Institute of Technology Tralee, Clash, Tralee, Kerry, Ireland

Pub. Date: August 01, 2018

Cite this paper:
Sinead Morris, Guiomar Garcia-Cabellos, Deirdre Enright, David Ryan and Anne-Marie Enright. Bioremediation of Landfill Leachate Using Isolated Bacterial Strains. International Journal of Environmental Bioremediation & Biodegradation. 2018; 6(1):26-35. doi: 10.12691/ijebb-6-1-4

Abstract

Landfilling is one of the most common and widely accepted practices for the disposal of waste throughout the world. Leachate, a major drawback of landfilling, continues to be produced at vast rates and current treatment options are costly and often inadequate. The management of leachate is of economic and environmental importance, due to its potential to cause contamination to ground and surface water. This research focuses on treating leachate in a cost-effective manner through bioremediation. Microorganisms were isolated from landfill leachate (LFL) and screened to determine their ability to remediate a wide range of compounds found in leachate, such as ammonia, phosphate and nitrate. Selected isolates were identified as belonging to the phylum’s Firmicutes, Actinobacteria, and Proteobacteria, isolates were inoculated into soil contained in a fixed bed column system. The column system was optimised and used for the treatment of LFL over a 10-hour period. High percentage removal rates were achieved for ammonia (>90%) and removal nitrate and phosphate (>60%). Although EPA discharge limits were not achieved, bioremediation using selected microbial strains represents a cost effective treatment option when compared to conventional methods. Research is now required to further optimise this system to achieve discharge limits for all compounds tested.

Keywords:
bioremediation landfill leachate wastewater management municipal solid waste

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  F. N. Ahmed and C. Q. Lan, “Treatment of landfill leachate using membrane bioreactors: A review,” Desalination, vol. 287, pp. 41-54, 2012.
 
[2]  E. De Torres-socías, L. Prieto-rodríguez, A. Zapata, I. Fernández-calderero, I. Oller, and S. Malato, “Detailed treatment line for a specific landfill leachate remediation . Brief economic assessment,” 2014.
 
[3]  D. Crowley, “Health and Environmental Effects of Landfilling and Incineration of Waste - A Literature Review,” 2003.
 
[4]  EC, “Council Directive 1999/31/EC concerning landfilling of waste on the landfill of waste,” 2001. [Online]. Available: http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A31999L0031. [Accessed: 21-Aug-2017].
 
[5]  EC, “Official Journal of the European Union. Waste Framework Directive.,” 2008. [Online]. Available: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098. [Accessed: 21-Aug-2017].
 
[6]  European Community, “Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy,” Off. J. Eur. Parliam., vol. L327, no. September 1996, pp. 1-82, 2000.
 
[7]  EC, “Council Directive concerning urban-waste-water treatment,” 2001. [Online]. Available: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0271. [Accessed: 21-Aug-2017].
 
[8]  EPA, “EPA Licensed Sites Report on Waste Enforcement,” 2015.
 
[9]  S. McCarthy, J. Moriarty, D. O’Riordan, and G. O’Leary, Focus on Landfilling in Ireland. 2010.
 
[10]  R. B. Brennan, E. Clifford, C. Devroedt, L. Morrison, and M. G. Healy, “Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations,” J. Environ. Manage., vol. 188, pp. 64-72, 2017.
 
[11]  R. B. Brennan, M. G. Healy, L. Morrison, S. Hynes, D. Norton, and E. Clifford, “Suitability of Municipal Wastewater Treatment Plants for the Treatment of Landfill Leachate,” Wexford, Ireland, 2017.
 
[12]  F. Kargi and M. Y. Pamukoglu, “Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation,” Bioresour. Technol., vol. 94, no. 3, pp. 285–291, 2004.
 
[13]  S. Kheradmand, A. Karimi-Jashni, and M. Sartaj, “Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system,” Waste Manag., vol. 30, no. 6, pp. 1025-1031, 2010.
 
[14]  S. M. Raghab, A. M. Abd El Meguid, and H. A. Hegazi, “Treatment of leachate from municipal solid waste landfill,” HBRC J., vol. 9, no. 2, pp. 187-192, 2013.
 
[15]  J. Nivala, M. B. Hoos, C. Cross, S. Wallace, and G. Parkin, “Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland,” Sci. Total Environ., vol. 380, no. 1-3, pp. 19-27, 2007.
 
[16]  M. K. Mehmood, E. Adetutu, D. B. Nedwell, and A. S. Ball, “In situ microbial treatment of landfill leachate using aerated lagoons,” Bioresour. Technol., vol. 100, no. 10, pp. 2741-2744, 2009.
 
[17]  R. H. Kadlec and L. A. Zmarthie, “Wetland treatment of leachate from a closed landfill,” Ecol. Eng., vol. 36, no. 7, pp. 946-957, 2010.
 
[18]  A. Mojiri, L. Ziyang, R. M. Tajuddin, H. Farraji, and N. Alifar, “Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system,” J. Environ. Manage., vol. 166, pp. 124-130, 2016.
 
[19]  S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin, “Landfill leachate treatment: Review and opportunity,” J. Hazard. Mater., vol. 150, no. 3, pp. 468-493, 2008.
 
[20]  R. B. Brennan, M. G. Healy, L. Morrison, S. Hynes, D. Norton, and E. Clifford, “Management of landfill leachate: The legacy of European Union Directives,” Waste Manag., vol. 55, pp. 355-363, 2016.
 
[21]  C. C. Azubuike, C. B. Chikere, and G. C. Okpokwasili, “Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects.,” World J. Microbiol. Biotechnol., vol. 32, no. 11, p. 180, Nov. 2016.
 
[22]  G. Tiwari and S. Singh, “Application of Bioremediation on Solid Waste Management: A Review,” J. Bioremediation Biodegrad., vol. 05, no. 06, Sep. 2014.
 
[23]  O. Ojuederie and O. Babalola, “Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review,” Int. J. Environ. Res. Public Health, vol. 14, no. 12, p. 1504, 2017.
 
[24]  L. K. Wang, Y.-T. Hung, and N. K. Shammas, Handbook of advanced industrial and hazardous wastes treatment. CRC Press, 2010.
 
[25]  I. Latorre, S. Hwang, and R. Montalvo-Rodriguez, “Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials,” J. Environ. Sci. Heal. Part A, vol. 47, no. 14, pp. 2254-2262, Dec. 2012.
 
[26]  B. Xie, S. Xiong, S. Liang, C. Hu, X. Zhang, and J. Lu, “Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate,” Bioresour. Technol., vol. 103, no. 1, pp. 71-77, Jan. 2012.
 
[27]  Z. Liang and J. Liu, “Landfill leachate treatment with a novel process: Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system,” J. Hazard. Mater., vol. 151, no. 1, pp. 202-212, Feb. 2008.
 
[28]  D. Zhang, R. Vahala, Y. Wang, and B. F. Smets, “Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction,” Int. Biodeterior. Biodegradation, vol. 113, pp. 88-96, Sep. 2016.
 
[29]  J. Wiszniowski, D. Robert, J. Surmacz-gorska, K. Miksch, and J.. Weber, “Landfill leachate treatment methods: A review,” pp. 51-61, 2006.
 
[30]  Y. J. Chan, M. F. Chong, C. L. Law, and D. G. Hassell, “A review on anaerobic–aerobic treatment of industrial and municipal wastewater,” Chem. Eng. J., vol. 155, no. 1-2, pp. 1-18, Dec. 2009.
 
[31]  J. G. Cappuccino and N. Sherman, Microbiology: a laboratory manual. Pearson, 2014.
 
[32]  E. F. Delong, “Archaea in coastal marine environments,” vol. 89, no. June, pp. 5685-5689, 1992.
 
[33]  D. J. Lane, B. Pace, G. J. Olsen, D. A. Stahlt, M. L. Sogint, and N. R. Pace, “Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses,” vol. 82, no. October, pp. 6955-6959, 1985.
 
[34]  C. L. Moyer, J. M. Tiedje, F. C. Dobbs, and D. M. Karl, “A Computer-Simulated Restriction Fragment Length Polymorphism Analysis of Bacterial Small-Subunit rRNA Genes: Efficacy of Selected Tetrameric Restriction Enzymes for Studies of Microbial Diversity in Nature †,” vol. 62, no. 7, pp. 2501-2507, 1996.
 
[35]  K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.,” Mol. Biol. Evol., vol. 10, no. 3, pp. 512-26, May 1993.
 
[36]  S. Kumar, G. Stecher, and K. Tamura, “MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets,” Mol. Biol. Evol., vol. 33, no. 7, pp. 1870-1874, Jul. 2016.
 
[37]  E. W. Rice, R. B. Baird, and A. D. Eaton, Eds., Standard Methods for the examination of waste and wastewater, 23rd ed. American Public Health Association, American Water Works Association, Water Environment Federation, 2017.
 
[38]  EPA, “Parameters of water quality,” Environ. Prot., p. 133, 2001.
 
[39]  T. H. Christensen et al., “Biogeochemistry of land leachate plumes,” Appl. Geochemistry, vol. 16, pp. 659-718, 2001.
 
[40]  J. P. Y. Jokela, R. H. Kettunen, K. M. Sormunen, and J. A. Rintala, “Biological nitrogen removal from municipal landfill leachate: Low-cost nitrification in biofilters and laboratory scale in-situ denitrification,” Water Res., vol. 36, no. 16, pp. 4079-4087, 2002.
 
[41]  A. H. Lee and H. Nikraz, “BOD:COD Ratio as an Indicator for Pollutants Leaching from Landfill,” J. Clean Energy Technol., vol. 2, no. 3, pp. 263-266, 2014.
 
[42]  R. C. Contrera, K. C. Da Cruz Silva, G. H. Ribeiro Silva, D. M. Morita, M. Zaiat, and V. Schalch, “The ‘chemical oxygen demand / total volatile acids’ ratio as an anaerobic treatability indicator for landfill leachates,” Brazilian J. Chem. Eng., vol. 32, no. 1, pp. 73-86, 2015.
 
[43]  A. A. Halim, H. A. Aziz, M. A. M. Johari, and K. S. Ariffin, “Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment,” Desalination, vol. 262, no. 1-3, pp. 31-35, 2010.
 
[44]  P. Kjeldsen, M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen, “Present and Long-Term Composition of MSW Landfill Leachate: A Review,” Crit. Rev. Environ. Sci. Technol., vol. 32, no. 4, pp. 297-336, 2002.
 
[45]  L. M. Chu, K. C. Cheung, and M. H. Wong, “Variations in the chemical properties of landfill leachate,” Environ. Manage., vol. 18, no. 1, pp. 105-117, 1994.
 
[46]  S. Q. Aziz, H. A. Aziz, M. S. Yusoff, M. J. K. Bashir, and M. Umar, “Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study,” J. Environ. Manage., vol. 91, no. 12, pp. 2608-2614, 2010.
 
[47]  M. J. K. Bashir, H. A. Aziz, M. S. Yusoff, and M. N. Adlan, “Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin,” Desalination, vol. 254, no. 1-3, pp. 154-161, 2010.
 
[48]  J. Gao et al., “The present status of landfill leachate treatment and its development trend from a technological point of view,” no. June, 2015.
 
[49]  M. A. Kamaruddin, “Sustainable treatment of landfill leachate,” Appl. Water Sci., pp. 113-126, 2015.
 
[50]  V. Torretta, N. Ferronato, I. A. Katsoyiannis, A. K. Tolkou, and M. Airoldi, “Novel and conventional technologies for landfill leachates treatment: A review,” Sustain., vol. 9, no. 1, 2017.
 
[51]  F. G. Priest, M. Goodfellow, and C. Todd, “A Numerical Classification of the Genus Bacillus,” Microbiology, vol. 134, no. 7, pp. 1847-1882, 1988.
 
[52]  N. Sharma and B. S. Saharan, “Original Research Article Role of Lysinibacillus sphaericus SNCh5 Bacterial Strain as Bio-inoculant for Agriculture Practice,” vol. 4, no. 12, pp. 484-499, 2015.
 
[53]  S. A. Martínez and J. Dussán, “No Title,” 2014.
 
[54]  R. Safitri, B. Priadie, M. Miranti, and A. W. Astuti, “Ability of Bacterial Consortium: Bacillus coagulans , Bacilus licheniformis , Bacillus pumilus , Bacillus subtilis , Nitrosomonas sp . and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER,” AgroLife Sci. J., vol. 4, no. 1, pp. 146-152, 2015.
 
[55]  M. A. Polti, J. D. Aparicio, C. S. Benimeli, and M. J. Amoroso, “Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria,” Int. Biodeterior. Biodegrad., vol. 88, pp. 48-55, 2014.
 
[56]  K. Egli, U. Fanger, P. J. J. Alvarez, H. Siegrist, J. R. Van der Meer, and A. J. B. Zehnder, “Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate,” Arch. Microbiol., vol. 175, no. 3, pp. 198-207, 2001.
 
[57]  V. H. Albarracín, M. J. Amoroso, and C. M. Abate, “Isolation and characterization of indigenous copper-resistant actinomycete strains,” Chemie der Erde - Geochemistry, vol. 65, no. SUPPL. 1, pp. 145-156, 2005.
 
[58]  M. A. Polti, M. C. Atjián, M. J. Amoroso, and C. M. Abate, “Soil chromium bioremediation: Synergic activity of actinobacteria and plants,” Int. Biodeterior. Biodegrad., vol. 65, no. 8, pp. 1175-1181, 2011.
 
[59]  M. A. Polti, M. J. Amoroso, and C. M. Abate, “Chromium(VI) resistance and removal by actinomycete strains isolated from sediments,” Chemosphere, vol. 67, no. 4, pp. 660-667, 2007.
 
[60]  T. Verma and N. Singh, “Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol,” J. Basic Microbiol., vol. 53, no. 3, pp. 277-290, 2013.
 
[61]  P. Segers, M. Vancanneyt, B. Pot, U. Torck, B. Hoste, and D. Dewettinck, “Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., Respectively,” Int. J. Syst. Bacteriol., vol. 44, no. 3, pp. 499-510, 1994.
 
[62]  X. Wang, X. Wang, M. Liu, L. Zhou, Z. Gu, and J. Zhao, “Bioremediation of marine oil pollution by Brevundimonas diminuta: effect of salinity and nutrients,” Desalin. Water Treat., vol. 57, no. 42, pp. 19768-19775, 2016.
 
[63]  S. Das and H. R. Dash, Handbook of metal-microbe interactions and bioremediation. 2017.
 
[64]  A.-I. Koukkou, Microbial bioremediation of non-metals: current research. Caister Academic Press, 2011.
 
[65]  D. R. Boone, R. W. Castenholz, and G. M. Garrity, Bergey’s manual of systematic bacteriology. Springer, 2001.
 
[66]  B. Antizar-Ladislao, J. Lopez-Real, and A. Beck, “Bioremediation of Polycyclic Aromatic Hydrocarbon (PAH)-Contaminated Waste Using Composting Approaches,” Crit. Rev. Environ. Sci. Technol., vol. 34, no. 3, pp. 249-289, May 2004.
 
[67]  W. Basuki, “Biodegradation of Used Synthetic Lubricating Oil by Brevundimonas diminuta,” vol. 21, no. 3, pp. 136-142, 2017.
 
[68]  A. E. Berns, H. Philipp, H.-D. Narres, P. Burauel, H. Vereecken, and W. Tappe, “Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy,” Eur. J. Soil Sci., vol. 59, no. 3, pp. 540-550, Jun. 2008.
 
[69]  G. Williams-Linera and J. J. Ewel, “Effect of autoclave sterilization of a tropical andept on seed germination and seedling growth,” Plant Soil, vol. 82, no. 2, pp. 263-268, 1984.
 
[70]  A. P. Lim and A. Z. Aris, “Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons,” Biochem. Eng. J., vol. 87, pp. 50-61, 2014.
 
[71]  R. M. Burgess, M. M. Perron, M. G. Cantwell, K. T. Ho, J. R. Serbst, and M. C. Pelletier, “Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations,” Arch. Environ. Contam. Toxicol., vol. 47, no. 4, pp. 440-447, 2004.
 
[72]  Z. Aksu and F. Gönen, “Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves,” Process Biochem., vol. 39, no. 5, pp. 599-613, 2004.
 
[73]  B. P. Naveen, D. M. Mahapatra, T. G. Sitharam, P. V. Sivapullaiah, and T. V. Ramachandra, “Physico-chemical and biological characterization of urban municipal landfill leachate,” Environ. Pollut., vol. 220, pp. 1-12, 2017.
 
[74]  EPA, “LANDFILL MANUALS LANDFILL,” 2000.
 
[75]  L. P. Riazanova, A. V Smirnov, T. V Kulakovskaia, and I. S. Kulaev, “Decrease of phosphate concentration in the medium by Brevibacterium casei cells.,” Mikrobiologiia, vol. 76, no. 6, pp. 752-8, 2007.