[1] | Bidoia E.D., Montagnolli R.N. and Lopes P.R.M. (2010). Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study, In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Mendez-Vilas A. (Ed.), FORMATEX, Badajoz, Spain. |
|
[2] | Geetha, S.J., Sanket, J.J. and Shailesh, K. (2013). Isolation and characterization of hydrocarbon degrading bacterial isolate from oil contaminated sites, APCBEE Procedia, 5, 237-241. |
|
[3] | Clemente, A. R., Anazawa, T. A. and Durrant, L. R. (2001). Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Brazil Journal Microbiology 32(4), 255-261. |
|
[4] | Mishra, S., Jyot, J., Kuhad, R. C. and Lal, B. (2001). Evaluation of inoculum addition to stimulate in situ bioremediation of oily slugde contaminated soil. Applied Environment 67, 1675-1781. |
|
[5] | Okoh, A.I., 2006. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology Molecular Biology Review 1, 38-50. |
|
[6] | Olu-Arotiowa, O.A., Aremu, M.O. and Alade, A.O. (2007). Ex-situ bioremediation of diesel polluted waste water in trophical hot climate. Asia Journal of Information and Technology 6(9), 961-963. |
|
[7] | Olowomofe, T. O., Oluyege, J.O., Gbaraneh, P. W. and Afolayan O. (2017). Degradative studies of crude-oil degrading bacteria isolated from hydrocarbon polluted surface water in Agbabu, Ondo State. Microbiology Research Journal International 15(3), 1-9. |
|
[8] | Chi-Yuan, F. and Krishnamurthy, S. (1995). Enzymes for Enhancing Bioremediation of Petroleum-Contaminated Soils: A Brief Review, Journal of the Air and Waste Management Association 45:6, 453-460. |
|
[9] | Van Hamme, J. D., Singh, A. and Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology Molecular Biology Review 67, 503-549. |
|
[10] | Cao, B., Nagarajan, K. and Loh, K. C. (2009). Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology 85 (2), 207-228. |
|
[11] | Kothari, V., Panchal, M. and Srivastava, N. (2013). Presence of Catechol Metabolizing Enzymes in Virgibacillus Salarius. Journal of Environmental Conservation Research 1(2), 29-36. |
|
[12] | Entrugul, S., Donmez, G., and Takac, S. (2007). Isolation of Lipase Producing Bacillus sp. from Olive Mill Wastewater and Improving its Enzyme Activity. Journal of Hazardous Materials 149, 720-724. |
|
[13] | Andrea, S. S. Robson, A., Rodrigo, J. S. and Fatima, M. B. (2012). Enzymatic activity of Catechol 1,2-dioxygenase and Catechol 2,3-dioxygenase produced by Gordonia polyisoprenivorans. Quim. Nova. 35:8, 1587-1592. |
|
[14] | Lima, V., Krieger, N., Mitchell, D., Baratti, J., De Filippis, I. and Fontana, J. (2004). Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. Journal of Molecular Catalysis B. Enzyme 31, 53-61. |
|
[15] | Subathra, M.K., Immanuel, G. and Suresh, A.H. (2013). Isolation and identification of hydrocarbon degrading bacteria from Ennore creek. Bioinformation 9(3), 150-157. |
|
[16] | Lopez, M.E.M., Rodriguez-Casasola, M.T., Rios-Leal, E., Esparza- Garcia, F., Chavez-Gomez, B., Rodriguez-Vazquez, R. and Barrera- Cortesa, J. (2007). Fungi and bacteria isolated from two highly polluted soils for hydrocarbon degradation. Acta Chimica Slovenica 54, 201-209. |
|
[17] | Ijah, U.J.J. and Antai, S.P. (2003b). Removal of Nigerian light crude oil in soil over a 12-month period, International Biodeterioration and Biodegradation 51(2), 93-99. |
|
[18] | Yakubu, M. B (2007). Biodegradation of Lagoma crude oil using pig dung. African Journal of Biotechnology 6 (24), 2821-2825. |
|
[19] | Zhang, D.C., Mortelmaier, C. and Margesin, R. (2012). Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Science Total Environment 421, 184-196. |
|
[20] | Li H, Zhang, Y., Zhang, C.G., and Chen, G.X. (2005). Effect of Petroleum- Containing Wastewater Irrigation on Bacterial Diversities and Enzymatic Activities in a Paddy Soil Irrigation Area. Journal of Environmental Quality 34, 1073-1080. |
|
[21] | Sathishkumar, M., Arthur, R.B., Sang-Ho, B. and Sei-Eok, Y. (2008). Biodegradation of Crude Oil by Individual Bacterial Strains and a Mixed Bacterial Consortium Isolated from Hydrocarbon Contaminated Areas. Clean 36, 92-96. |
|
[22] | Zhang, D. C., Liu, H.C., Xin, Y.H., Zhou, Y.G., Schinner, F. and Margesin, R. (2010). Dyadobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology 60, 1640-1643. |
|
[23] | Nkanang, A. Sylvester, P. A. and Atim, D. A. (2017). Bonny Light Crude Oil Degradative Potental of Species of Cirobacter. Microbiology Research Journal International 21(4), 1-10. |
|
[24] | Nwanchukwu, S. U and Ugoji, E.O. (1995). Impacts of crude petroleum spills on microbial communities of tropical soils. International Journal of Ecology and Environmental Science 21, 169-176. |
|
[25] | Okpokwasili, G. C and James, W. A. (1995). Microbial contamination of kerosene, gasoline, and crude oil and their spoilage potentials. Material u Organismen 29, 147-156. |
|
[26] | Wei, J., Zhou, Y. and Xu, T., (2010). Rational design of catechol 2,3- dioxygenase for improving the enzyme characteristic. Applied Biochemistry and Biotechnology 162, 116. |
|
[27] | Ahi, A.P., Gonnety, T. J., Faulet, B. M., Kouamé, L. P. and Niamké, S. L. (2007). Biochemical characterization of two α-mannosidasesfrom breadfruit (Artocarpus communis) seeds. African Journal of Biochemistry Research, 1: 106-116. |
|
[28] | Zou, Y., Wei, J. and Jiang, T. (2007). Characterization of thermostable catechol-2,3-dioxygenase from phenanthrene degrading Pseudomonas sp. strain ZJF08. Annual Microbiology 57, 503-801. |
|
[29] | Fernandez-Lafuente, R., Guisan, J.M., and Ali, S. (2000). Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability. Enzyme Microb Technol 26, 568. |
|
[30] | Olukunle, O. F. Babajide, O. and Boboye, B. (2015). Effects of Temperature and pH on the Activities of Catechol 2,3-dioxygenase Obtained from Crude Oil Contaminated Soil in Ilaje, Ondo State, Nigeria. The Open Microbiology Journal 9, 84-90. |
|
[31] | Baik, K. S., Kim, M. S., Kim, E. M., Kim, H. R. and Seong, C. N. (2007). Dyadobacter koreensis sp. nov., isolated from fresh water. International Journal of Systematic and Evolutionary Microbiology 57, 1227-1231. |
|
[32] | Sifour, M., Zaghloul, T.I., Saeed, H.M., Berekaa, M.M. and Abdel-fattah, Y.R. (2010). Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental designs. N. Biotechnol. 27(4), 330-336. |
|
[33] | Kim, H. K., Choi, H.J., Kim, M.H, Sohn, C.B., and Oh, T.K. (2002). Expression and characterization of Ca(2+)-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta. 1583, 205-212. |
|
[34] | Meghwanshi, G., Agarwal, L., Dutt, K. and Saxena, R. (2006) . Characterization of 1-3 regiospecific lipases from new Pseudomonas and Bacillus isolates. J. Mol. Catal. B. Enzyme 40, 127-131. |
|
[35] | Kambourova, M., Kirilova, N., Mandeva, R,. and Derekova, A. (2003). Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC Journal of Molecular Catalysis B. Enzyme 7(22), 307-313. |
|