International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: http://www.sciepub.com/journal/ijebb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
International Journal of Environmental Bioremediation & Biodegradation. 2017, 5(3), 86-92
DOI: 10.12691/ijebb-5-3-2
Open AccessReview Article

Biodegradation of Industrial Pollutants by Plant Growth Promoting Halotolerant Bacteria-A Review

Asmita Singha1, and Singh Dileep Kumarb1

1Pesticide Toxicology & Soil Microbiology Laboratory, Zoology department, University of Delhi, Delhi

Pub. Date: November 30, 2017

Cite this paper:
Asmita Singha and Singh Dileep Kumarb. Biodegradation of Industrial Pollutants by Plant Growth Promoting Halotolerant Bacteria-A Review. International Journal of Environmental Bioremediation & Biodegradation. 2017; 5(3):86-92. doi: 10.12691/ijebb-5-3-2

Abstract

Little information is there on biodegradation of industrial pollutants by halotolerant rhizosphere microorganism. Moderate halophile microorganism has wide application in degradation of organic pollutants under moderate salt condition. Their potential to fully degrade harmful chemicals remain unexplored. Conventionally known mesophilic organisms are found incapable for efficient removal of pollutants in saline concentration. Halophile or halotolerant microorganism are different and adapted to low-extreme salt condition. Therefore, these microorganisms are capable of bioremediation of hydrocarbon, dyes and phenol under saline condition. The previous studies have shown that halophilic microorganism can eliminate polycyclic aromatic hydrocarbon, petroleum hydrocarbon and phenolic compounds. In the present review we discuss recently work done on degradation of hydrocarbon, phenols, heavy metals, azo dyes, pesticide such DDT, lindane by halotolerant rhizobacteria.

Keywords:
Biodegradation Halotolerant Organic Pollutants Rhizosphere Bacteria

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. Int. J. Phytorem. 13 (sup1), 4-16. Glick, B.R., Liu, C.P., Ghosh, S., Dumbroff, E.B., 1997.
 
[2]  Inoculating wheat seedling with bacteria producing exopolysaccharide and stimulates plant growth under salt stress. Bal, H.B., Nayak, L., Das, S., Adhya, T.K., 2013.Biol. Fertil. Soils 40, 157-162.
 
[3]  Degradation of aromatic hydrocarbon by moderate halo archaea isolated from turkey. Fairley DJ, Boyd DR, Sharma ND, Allen CCR, Morgan P, Larkin MJ (2002) Water Air Soil Pollut 224: 1449.
 
[4]  Biodegradation of phenol in salty conditions by Pseudomonas aeruginosa and Pseudomonas pseudomallei monocultures J Hazard Mater 149: 60-66 Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010).
 
[5]  Crude oil and hydrocarbons degradation by halotolerant archaea. Extremophiles 14: 321-328 Aloui F, Khoufi S, Loukil (2009).
 
[6]  Biodegradation of polyaromatic hydrocarbons by moderately halophilic bacterial consortia Mar Pollut Bull 58: 256-262 Arulazhagan P, Vasudevan N (2011a).
 
[7]  Polycyclic hydrocarbons utilized by nutrients of halotolerant bacteria. J Environ Sci 23(2): 282-287 Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2007).
 
[8]  Newly isolated halotolerant bacteria degrade azo dyes Bioresource Technol 98(11): 2082-2088 BalamuruganB, ThirumarimuruganM, Kannadasan T (2011).
 
[9]  Halomonas sp degrade textile dye effluent by anaerobic pathway. Barragán BE, Costa C, Márquez MC (2007) Bioresource Technol 102: 6365-6369.
 
[10]  Bacteria grown in niches of the green bean coffee degrade organochlorine pesticides. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Int Biodeter Biodegrad 59: 239-244.
 
[11]  Biodegradation of hydrocarbons by halotolerant archaea. Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Chemosphere 84: 1671-1676 Bonfá MRL.
 
[12]  Degradation of phenol by halotolerant bacterial strain. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Biodegradation 24: 699-709.
 
[13]  Biological Removal of phenolic compounds from fluids: a short review of recent developments. J Hazard Mater 160: 265-288 Campo P, Platten W III, Suidan MT, Chai Y, Davis JW (2011).
 
[14]  Biodegradation of amine compounds in industrial wastewater by aerobic pathway Chemosphere 85:1199-1203 Chan GF, RashidNAA, ChuaLS, llahNA, NasiriR, RoslanM, IkubarM (2012).
 
[15]  Decolorization of azo dyes acclimatized by microbial consortium. Bioresource Technol 99: 2552-2558 Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012).
 
[16]  Biodegradation of polycyclic hydrocarbons by a consortium of halotolerant microbes. DiazMP, BoydKG, Grigson SJW, Burgess JG (2002). Appl Microbiol Biotechnol 95: 789-798.
 
[17]  Biodegradation of hydrocarbon by haloarchaeon Haloferax sp. MSNC14 surfactant production. Dosta J, Nieto JM, Vila J, Grifoll M, Mata-Álvarez J (2011) Extremophiles 17: 669-675.
 
[18]  Removal of phenol from industrial wastewaters in a Biological Reactor (MBR): Hajjouji H, Pinelli E, Guiresse M, Merlina G, Revel JC, Hafidi M (2007) Bioresource Technol 102: 4013-4020 El.
 
[19]  Aerobic degradation of 4-hydroxybenzoic acid by Archaea involving an intra molecular migration. Farag S, Soliman NA (2011) Appl Environ Microbiol 68: 6246-6255.
 
[20]  Biodegradation of crude oils by Candida tropicalis Feng TC, Cui CZ, Dong F, Feng YY, Liu YD, Yang XM (2012) Braz Arch Biol Technol 54: 821-830.
 
[21]  Bioremediation of phenanthrene by halotolerant Martelella sp. García MT, Ventosa A, Mellado E (2005) J Appl Microbiol 113: 779-789.
 
[22]  Halotolerant bacteria degrading aromatic compound and its versatility. Ecol 54: 97-109 Gayathri KV, Vasudevan N (2010).
 
[23]  Halotolerant bacterial consortia from saline environment degrading Phenol. Ghevariya CM, Bhatt JK, Dave BP (2011) J Bioremed Biodegrad 1: 104.
 
[24]  Halotolerant Achromobacter xylosoxidans degrading chrysene Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin MS (2008) Bioresource Technol 102: 9668-9674.
 
[25]  A new halotolerant bacterium isolated for removing azo dye under moderate saline condition. Haddadi A, Shavandi M (2013) Biodegradation 19: 15-19.
 
[26]  Halomonas sp. strain degarde phenol in salt conditions. Int Biodeter Biodegrad 85: 29-34.
 
[27]  Hao R, Lu A (2009) by halotolerant bacterium of crude oils. Hinteregger C, Streichsbier F (1997) Proc Natl Acad Sci U S A 19: 997-1001.
 
[28]  The composition of water obtained from oil and gas production in the North Sea. In: Ray JP, Englehart FR (eds) Produced water. Plenum Press, New York Jin Q, Hu Z, Jin Z, Qiu L, Zhong W, Pan Z (2012).
 
[29]  Treatment of waste water by Halanaerobium lacusrosei through anaerobic pathway Process Kargi F (2002) Biochem 42:449-453.
 
[30]  Waste water treatment by halotolerant supplemented culture in an aerated rotating bio disc contactor. Kargi F, Dincer AR, Pala A (2000) Enzyme Microb Technol 22:427-433.
 
[31]  Biological removal of industrial waste water. Khomyakova M, Bükmez O, Thomas LK, Erb TJ, Berg IA (2011) Bioprocess Eng 23: 371-374.
 
[32]  Amines: synthesis and applications. Cambridge Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Cambridge University Press.
 
[33]  Bioremediation of organic pollutants by halotolerant bacteria and archaea. Le febvre O,Moletta R (2006) J Mol Microbiol Biotechnol 15: 74-92.
 
[34]  Removal of organic pollutants in industrial wastewater: a literature review. Lefebvre O, Vasudevan N, Torrijos M, Thanasekaran K, Moletta (2005) Water Res 40: 3671-3682.
 
[35]  Biodegradation of phenolic pollutant by a halotolerant strain of Penicillium chrysogenum. Li J, Jin Z, Yu B (2010) Int Biodeter Biodegrad 59: 220-225.
 
[36]  Aniline degradations by halotolerant bacterium, Erwinia sp. strain HSA6. Microbiol Res165:418426LiH, ZhangQ, WangXL, MaXY, LinKF, LiuYD, GuJD, LuSG, ShiL, Lu Q, Shen TT (2012).
 
[37]  Bioremediation of benzene in sediment of China Sea. 136 Lin SH, Shyu CT, Sun MC (1998) Bioresource Technol 124: 129.
 
[38]  Colour removal from waste water containing azo dyes by an halotolerant immobilized bacterial cell. Oren A (2002a) Ecol Eng 37: 2056-2060.
 
[39]  Industrial and environmental use of halotolerant microorganisms. Environ Technol 31:825-834 Oren A, Gurevich P, Henis Y (1991).
 
[40]  Aromatic compounds which are nitrosubstituted reduced by the halotolerant eubacteria Haloanaerobium praevalens. Appl Environ Microbiol 57: 3367-3370 Oren A, Gurevich P, Azachi M, Henis Y (1992).
 
[41]  Mechanism of decolorization and degradation of Red 120 by Bacillus lentus BI377. Pandey A, Singh P, Lyengar L (2007) Bioresource Technol 102:758-764.
 
[42]  Reduction of COD and aromatics in petroleum water using indigenous microorganisms. Ravikumar S, Parimala PS, Gokulakrishnan R (2011) Int Biodeter Biodegrad 68:78-84.
 
[43]  Bacterial degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138-157 Sei A, Fathepure BZ (2009).
 
[44]  Biodegradation of BTEX compounds in saline condition by an culture from sediments of Rozel Point at Great Salt Lake. Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2007) J Appl Microbiol 107: 2001-2008.
 
[45]  Bio removal of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4- dioxygenation Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Biodegradation 18: 123-131.
 
[46]  Novosphingobium pentaromativorans sp. Nov degrade polycyclic aromatic hydrocarbon isolated from estuarine sediment. Solis M, Solis A, Pérez HI, Manjarrez N, Flores M (2012) IntJSyst Evol Microbiol 54: 1483-1487.
 
[47]  Identification and characteristics of halotolerant Exiguobacterium sp. for azo dye removal. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Appl Biochem Biotech 159: 728-738.
 
[48]  Biodegradation of petroleum hydrocarbons in groundwater: in situ augmentation. Wang P, Qu Y, Zhou J (2009) Water Sci Technol 20: 501-503.
 
[49]  Bioremediation of mixed phenolic compounds under moderate salt condition by Arthrobacter sp. W1. Whitehouse BG (1984) Appl Biochem Biotechnol 159: 623-633.
 
[50]  The effects of temperature and salinity polynuclear aromatic hydrocarbons and their solubility. Woolard CR, Irvine RL (1995) Mar Chem 14: 319-332 Ashraf, M., Berge, S.H., Mahmood, O.T., 2004.
 
[51]  Isolation of ACC deaminase producing rhizobacteria from rice and evaluating their plant growth promoting activity under salt condition. Plant Soil 366, 93 Gerhardt, K.E., Huang, X.D., Glick, B.R., Greenberg, B.M., 2009.
 
[52]  Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 176, 20-30. Glick, B.R., 1995.
 
[53]  The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41, 109-117. Glick, B.R., Stearns, J.C., 2011.
 
[54]  Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas pudita.
 
[55]  Biodegradation of phenol in salty condition by Pseudomonas aeruginosa and Pseudomonas pseudomallei monocultures J Hazard Mater 149: 60–66 Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010).
 
[56]  Stress adaptations in plant growth promoting Rhizobacterium with increasing salinity in coastal agricultural soils J Basic Microbiol.2008, Paul D, et al.
 
[57]  Analysis of the induction of general stress proteins of Bacillus subtilis, Microbiology140:741-52, Volker U,et al.
 
[58]  Purification and characterization of two novel halotolerant extracellular alkaline proteases from bacillus subtilis strain FP-133.Biosci. Biotechnol. .,70:433-440 , Setyorini et al (2006).
 
[59]  Crude oil and hydrocarbons degradation by halotolerant archaea. Extremophiles 14:321–328 Aloui F, Khoufi S, Louki.
 
[60]  Taxonomic Study and amended description of vibrio costicola. Internation Journal of systematic and evolutionary microbiology 37:251-256, A ventosa, M.T. Gracia (1987).
 
[61]  Biotransformation of ferulic acid to vanilln in packed bed -stirred fermenters, Scientific reports 6, Article number: 34644 , Lei Yan, Pen chen, (2016).
 
[62]  Haloforex sp .D1227, a halophilic archaeon capable of growth on aromatic compounds, Archives of microbiology, Emerson et al 1994.
 
[63]  Response surface methodology as a tool for production of antimicrobial agents from Bacillus Licheniformis SN2, current research in bacteriology, Abou-Elela 2010.
 
[64]  Marinobacter hydrocarbonoclasticus gen..,sp.nov., a new extremely halotolerant hydrocarbon-degrading marine bacterium, Int. journal of sys. and evolutionary microbiology, Gauthier et al 1992.
 
[65]  Isolation of thermophilic and halophilic tyrosol-degrading geobacillus from high temp oil field, FEMS microbiology letters, Chamkha et al 2008.
 
[66]  Decomposition of halogenated hydrocarbons by halophilic bacteria. Patent DE19639894, Oesterhelt et al 1998.
 
[67]  Bacterial decolorization and degradation of azo dyes: a review, journal of Taiwan institute of chemical engineers. Saratale et al 2011.
 
[68]  Bioremediation of Cadmium by Bacillus Safensis , bacteria isolated from mangrove sediments. Int journal of current microbiology and applied sciences, priyalaxmi et al 2014.