International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
International Journal of Environmental Bioremediation & Biodegradation. 2017, 5(3), 77-85
DOI: 10.12691/ijebb-5-3-1
Open AccessArticle

Production of Efficient Microbial Complex for Organic Fraction of Municipal Organic Solid Waste Pretreatment Upstream Anaerobic Digestion

Mahamadi NIKIEMA1, , Marius K. SOMDA1, Kifouli ADEOTI2, Désiré TRAORE1, Farid BABA-MOUSSA2, Fatiou TOUKOUROU2, Dayéri DIANOU3 and Alfred S. TRAORE1

1Centre de Recherche en Sciences Biologiques Alimentaires et Nutritionelles (CRSBAN), Universté Ouaga I, Pr Joseph KI-ZERBO, 03 BP 7131Ouagadougou 03, Burkina Faso

2Laboratoire de Microbiologie et Technologies Alimentaires (LAMITA), Université d’Abomey-Calavi, B.P. 526 Abomey-Calavi, Bénin

3Centre National de la Recherche Scientifique et Technologique (CNRST), 03 BP 7192 Ouagadougou 03, Burkina Faso, Ouagadougou, 03 BP 7192 Ouagadougou 03, Burkina Faso

Pub. Date: November 23, 2017

Cite this paper:
Mahamadi NIKIEMA, Marius K. SOMDA, Kifouli ADEOTI, Désiré TRAORE, Farid BABA-MOUSSA, Fatiou TOUKOUROU, Dayéri DIANOU and Alfred S. TRAORE. Production of Efficient Microbial Complex for Organic Fraction of Municipal Organic Solid Waste Pretreatment Upstream Anaerobic Digestion. International Journal of Environmental Bioremediation & Biodegradation. 2017; 5(3):77-85. doi: 10.12691/ijebb-5-3-1


The aim of this present study is to select high performance microbial strains for organic municipal solid waste biological pretreatment. Waste samples were collected at three municipal waste pre-collection centers in the city of Ouagadougou. Standard isolation and characterization methods have been used for strains selection in different biotopes. Waste biodegradation tests were carried out in bottle (300 mL) with 120 mL of useful volume composed of the buffer (K2HPO4 and NH4Cl) and 2% of waste. Optimization tests of waste pretreatment were carried out in function of temperature and inoculum proportion (10 % and 25 %). The evolution of pH and total solid loss was monitored during fermentation. Sixteen (16) microbial strains were isolated from different matrices, including three (03) cellulolytic bacteria (CA1, CA2, CA3), three (03) Streptomyces sp (SS1, SS2, SS3), four (04) Bacillus sp (BS1, BS2, BDP, BAF), three (03) Yeasts (YBB, YDP, YEU) and three (03) molds (MS, MBB, MDP). The pH drops from 7 to 5.4 and persists until the 6th day was followed by a gradual increase in pH to 9. Temperature rise at 37 °C allowed a sudden acidification from the 3rd day (pH 5.6 at 30°C and pH 4.72 at 37°C) and increases to pH 10. The CA3-SS3-BDP-YBB consortium has been identified as the best combination for a pre-fermentation of municipal waste. The TS reduction on day 25 ranged from 9.9 g/L or 49.5% of TS removal for TNS, 6.7 g/L or 33.5 % for MDP, 9.3 g/L or 46.5% for SS3, 6.3 g/L or 31.5% for YDP, 8.7 g/L or 43.5% for CA3, 7 g/L or 35% for MBB and 4.8 g/L or 24% for YBB. The optimization allowed a reduction of the pretreatment time to 4 days, obtaining a biomass adapted to anaerobic digestion.

Screening microorganisms biological pretreatment organic waste

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  United Nations, World Urbanization Prospects The 2007 Revision Highlights. Vol. ESA/P/WP/2, Department of Economic and Social Affairs, 2007. /pop ulation/unpop.htm.
[2]  Amoo OM, Fagbenle R. Renewable municipal solid waste pathways for energy generation and sustainable development in the Nigerian context, International Journal of Energy and Environmental Engineerin, 4(1): 42. July 2013.
[3]  Sérémé, A, Mey, P. Valorisation agricole des ordures ménagères en zone soudano-sahélienne: cas de la ville de Bobo Dioulasso, Revue du CAMES Science et Médecine, Série A vol 4, 2006.
[4]  Mbouaka, E. M., Étude de l'éfficacité agronomique des composts des ordures ménagères au Burkina Faso: cas de la ville de ouagadougou, p79, Juin 2000.
[5]  Menikpura, S. N. M, Basnayake, B.F.A, New applications of ‘Hess Law’ and comparisons with models for determining calorific values of municipal solid wastes in the Sri Lankan context, Renewable Energy, 34:1587-1594, November 2009.
[6]  Mao, C., Feng, Y., Wang, X., Ren, G. Review on research achievements of biogas from anaerobic digestion. Renewable Sustain Energy Revew. 45: 540-455, 2015.
[7]  Cooper, C. D., Kim, B., Macdonald, J., Estimating the Lower Heating Values of Hazardous and Solid Wastes Estimating the Lower Heating Values of Hazardous and Solid Wastes, Journal of the Air & Waste Management Association, 49: 4, 471-476, June 2017.
[8]  Tou I, Touzi SIA, Production de Biométhane à Partir des Déjections Animales, 103-108, 2001.
[9]  Eleazer, W.E., Odle, W.S., Wang, Y., Barlaz, M.A. Biodegradability of Municipal Solid Waste Components in Laboratory-Scale Landfills, Environmental Science & Technology, 31(3): 911-917, 1997.
[10]  Lacour, J. Valorisation de résidus agricoles et autres déchets organiques par digestion anaérobie en Haïti, Mémoire de thèse, p217, 2012.
[11]  Lacour, J., Bayard, R., Emmanuel, E., Gourdon, R. Evaluation du potentiel de valorisation par digestion anaérobie des gisements de déchets organiques d ’ origine agricole et assimilés en Haïti. Déchet -Revue Francophone d’Ecologie Industrielle, 60: 31-41, 2011.
[12]  Boulanger, A. Préparation d’ un déchet ménager pour l ’ optimisation du potentiel et de la cinétique méthanogène, Mémoire de thèse, Institut des Sciences et Industries du Vivant et de l’Environnement AgroParisTech, p316, 2011.
[13]  Angelidaki I, Mogensen AS, Ahring BK. Degradation of organic contaminants found in organic waste, Biodegradation, 11(6): 377-383, 2000.
[14]  Hansen, T.L., Jansen, J.C., Davidsson, A., Christensen, T.H. Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery. Waste Management, 27: 398-405, May 2007.
[15]  Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S., Rana, V. Enhancement of biogas production from solid substrates using different techniques - a review, 95: 1-10, March 2004.
[16]  Bisaria, V.S., Ghose, T.K. Sorption characteristics of cellulases on cellulosic substances, in: Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein. In: symposium proceedings, (Editor: Ghose, TK), IIT, New Delhi, 155-164, 1978.
[17]  Hamdi, M., Gareia, J.L., Ellouz, R. Integrated biological process for olive mill wastewaters treatment. Bioprocess Ingineering, 8:79-84, 1992.
[18]  Hamdi, M., Garciab, J.L. Anaerobic Digestion of Olive Mill Wastewaters after Detoxlfication by Prior Culture of Aspergillus, Process Bichemistry, 28: 155-159, 1993.
[19]  Schober, G., Trosch, W. Degradation of digestion residues by lignolytic fungi. Water Ressource, 34(13): 3424-3430, 2000.
[20]  Fourti, O., Jedidi, N., Hassen, A. Comparison of methods for evaluating stability and maturity of co-composting of municipal solid wastes and sewage sludge in semi-arid pedo-climatic condition, Natural Science,3(2):124-135, 2011.
[21]  Kumar A, Bisht BS, Joshi V., Dhewa T. Review on Bioremediation of Polluted Environment: A mTool. International Journal of Environmental Sciences, 1(6): 1079-1093, March 2011.
[22]  Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain. International Journal of Microbiology, p12, Octobre 2012.
[23]  Neumann, D., Heuer, A., Hemkemeyer, M., Martens, R., Tebbe CC. Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants, International Society for Microbial Ecology, 8(6): 1289-1300, January 2014.
[24]  Pathak, V.M., Navneet. Review on the current status of polymer degradation: a microbial approach, Bioresour Bioprocess, 4:15, 2017.
[25]  Kirk, T.K., Farrell, R.L. Enzymatic Combustion: The microbial degradation of lignin, 465-505, 1987.
[26]  Bayer, E.A., Shimon, L.J.W., Shoham, Y., Lamed, R. Cellulosomes — Structure and Ultrastructure, Journal of Structural Biology, 124: 221-234, November 1998.
[27]  Sinsabaugh, R., Antibus, R.K., Linkins, A.E. An enzymic approach to the analysis of microbial activity during plant litter decomposition An enzymic approach to the analysis of microbial activity during plant litter decomposition, Agriculture, Ecosystems and Environmental, 34:43-54, July 1991.
[28]  Tuomela, M., Vikman, M., Hatakka, A., Itavaara, M. Biodegradation of Lignin in a Compost Environment: A Review. Bioresource Technology, 72: 169-183, 2000.
[29]  Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S.G., Rozzi, A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science Technology, 45(10):65-73, 2002.
[30]  Charnay, F. Compostage des déchets urbains dans les Pays en Développement : élaboration d’une démarche méthodologique pour une production pérenne de compost, Mémoire de thèse, Universite de limoges ecole doctorale, p228, 2005.
[31]  TAPPI (Technical Association of the Pulp and Paper Industry), Ash in Wood and Pulp, T. CM-86, 2002.
[32]  Nicholson, D.J., Leavitt, A.T., Francis RC. Cellulose chemistry and technology a three-stage klason method for more accurate determinations of hardwood lignin content. Cellul. Chem. Technol., 48(12): 53-59, 2014.
[33]  DiLallo, R., Albertson, O.E. Volatile acids by direct titration. Water Environ, 33(4):356-365, 2014.
[34]  Chastrusse C. Localisation et diversité de bactéries celllulolytiques lors d’un cycle de dessiccafion/réhumectation, ORSTOM Dakar, 1998.
[35]  Sharma D, Kaur T, Chadha BS, Manhas RK. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. Tropical Journal of Pharmaceutical Research,10 (6):801-808, December 2011.
[36]  Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. W.S. Genus Acetobacter and Gluconobacter. Bergey’s Manual of Determinative Bacteriology. In: 19th edn Williams and Wilkens, MD, USA, 71-84, 1994.
[37]  Carr, F.J., Chill, D., Maida, N. The Lactic Acid Bacteria: A Literature Survey. Critical Revew Microbilogy, 28(4): 281-370, July 2002.
[38]  Cisse, H., Savadogo, A., Taale, E., Tapsoba, F., Guira, F., Traore. Y. Influence des substrats carbonés et minéraux sur l ’ activité des substances BLIS ( Bacteriocin-Like Inhibitory Substances) produites par des souches de Bacillus isolées à partir d ’ aliments fermentés au Burkina Faso, Journal of Applied Biosciences, 106: 10236-10248, October 2016.
[39]  Rehman, H.U., Siddique, N.N., Aman, A., Nawaz, M.A., Baloch, A.H., Qader, S.A.U. Morphological and molecular based identification of pectinase producing Bacillus licheniformis from rotten vegetable, Academy of Scientific Research and Technology, 13(2): 139-144, 2015.
[40]  Mandimbisolofo, V.N., Marson, R., Daniel, R. Contribution à l ’ étude des propriétés biologiques des extraits de feuilles de senecio faujasioïdes (Asteraceae) Contribution to the survey of the biologic properties of the excerpts of leaves of senecio faujasioïdes (Asteraceae), 33-40, 2013.
[41]  Pridham, T.G., Gottlieb, D. The utilization of carbon compounds by some determination. University of Illinois, Urbana, Illinois, 56:107-114, 1948.
[42]  Dutta, M., Chamendra, N., Pai, S.G., Pramod, T. Original Research Article Isolation and screening of agro-waste substrates for protease production through solid state fermentation. International Journal of Current Microbiology and Applied Sciences, 3(3): 774-781, 2014.
[43]  Poszytek, K., Ciezkowska, M., Sklodowska, A. Microbial Consortium with High Cellulolytic Activity ( MCHCA ) for Enhanced Biogas Production. Frontiers in Microbilogy, 7:1-11, March 2016.
[44]  Ghaffar, S.H., Fan, M. Structural analysis for lignin characteristics in biomass straw Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 1-16, August 2013.
[45]  Ruiz-dueñas, F.J., Martínez, Á.T. Review Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology, 2(2):164-177, 2009.
[46]  Skyba, O., Douglas, C.J., Mansfield, D. Syringyl-Rich Lignin Renders Poplars More Resistant to Degradation by Wood Decay Fungi. Applied and Environnmental Microbiology, 79(8):2560-2571, February 2013.
[47]  Ostrem, K. Greening waste: anaerobic digestion for treating the organic fraction of municipal solid waste. Dep Earth Environ Eng Fu Found Sch Eng Appl Sci Columbia Univ.;(The Earth Engineering Center and the Henry Krumb School of Mines): 1-59, 2004.
[48]  Culot M. Filières de valorisation agricole des matières organiques. Faculté universitaire des sciences agronomiques, p73, 2005.
[49]  Lacour, J. Valorisation de résidus agricoles et autres déchets organiques par digestion anaérobie en Haïti, Université Quisqueya (Haïti), 2012.
[50]  Akin, H. Evolution du pH pendant la fermentation alcoolique de moûts de raisins: modélisation et interprétation métabolique, Mémoire de thèse, Institut National Polytecnique de Toulouse, 2008.
[51]  Taiek, T., Boutaleb, N., Bahlaouan, B., El jaafari, A., Khrouz, H., Safi, A. et El antri, S. Valorisation de déchets de poisson alliés à des rejets brassicoles en vue d’obtenir un biofertilisant, Déchets Sciences et Techniques, 64:24‑30, 2014.
[52]  Aissam, H. Etude de la biodégradation des effluents des huileries (margines) et leur valorisation par production de l’enzyme tannase, Université Sidi Mohamed Ben Abdellah, p155, 2003.
[53]  Fadil, K., Chahlaoui, A., Ouahbi, A., Zaid, A., Borja, R. Aerobic biodegradation and detoxiÿcation of wastewaters from the olive oil industry, International Biodeterioration & Biodegradation, 51:37-41, 2003.
[54]  Fountoulakis, M., Dierssen, M., Lubec, G. Proteomic analysis of the fetal brain, Proteomics, 2:1547-76, 2002.
[55]  Lornage R el. Comparaison de trois filieres de stockage d ’ ordures menageres: Etude du comportement des déchets en pilotes semi industriels et caractérisation des émissions liquides et gazeuses associées, Université Claude Bernard - Lyon I; 2007.
[56]  Albrecht, R. Co-compostage de boues de station d’épuration et de déchets verts: nouvelle méthodologie du suivi des transformations de la matière organique, Université Paul Cezanne Aix-Marseille III, p189, 2007.
[57]  Berthe C. Etude de la Matière Organique contenue dans des lixiviats issus de différentes filières de traitement des déchets ménagers et assimilés. Université de Limoges; 2006.
[58]  Douma, N.T. Valorisation par compostage des résidus solides urbains de la commune de Chlef, Algérie, Université de limoge/université de blida, 2013.
[59]  Lourhzal, W., Tahri, E.H., Faïd M. Ensilage des déchets de poisson et essai d ’ alimentation sur les rats. Actes Inst Agron Vet., 23(1):15‑20, Janvier 2003.
[60]  Yulipriyanto, H. Emission d’effluents gazeux lors du compostage de substrats organiques en relation avec l’activité microbiologique (nitrification/dénitrification), Université de Renne I, 2001.
[61]  De Araujo Morais, J.J. Influence des pré-traitements mécaniques et biologiques des Ordures Ménagères Résiduelles ( OMR ) sur leur comportement bio-physico-chimique en Installation de Stockage de Déchets (ISD), Institut National des Sciences Appliquées de Lyon, 2006.
[62]  Bardos, P. Review Composting of Mechanically Segregated Fractions of Municipal Solid Waste – A Review. SITA Environ Trust, p143, November 2014.
[63]  Crawford, D.L., Pometto, L. Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation Intermediatet., Applied and Environmental Microbiology, 45(3):898-904, March 1983.
[64]  Ugwuanyi, J.O., Harvey, L. M. M. B. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste. Bioressource Technology, 96:721-30.
[65]  Parawira W, Murto M, Zvauya R, Mattiasson B. Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate, Renewable Energy, 31:893-903, 2006.
[66]  Jedrczak, M.S.A. Effect of aerobic pretreatment of waste on the rate of anaerobic treatment processes. Journal Mater Cycles Waste Management, 15:138-45, 2013.
[67]  Mshandete, A, Murto M, Kivaisi AK, Rubindamayugi MST, Mattiasson B. Influence of recirculation flow rate on the performance of anaerobic packed-bed bioreactors treating potato-waste leachate. Environmental Technology, 25(8):929-36, 2004.
[68]  Manonmani, P., Goel, M., Muazu, L. Biogas production potential of different substrate in various combinations, International Journal of Advanced Research in Biology Engineering Science and Technology, 2(6):76-94, June 2016.
[69]  Panswad, T., Anan, C. Impact of high chloride wastewater on an anaerobic / anoxic / aerobic process with and without inoculation of chloride acclimated, Water Research, 33(5):1165-72, 1999.
[70]  Lefebvre, O., Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review, Water Research, 40: 3671-82, October 2006.
[71]  Fang, C., O-thong, S., Boe, K., Angelidaki, I. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent ( POME ), Journal of Hazardous Materials, 189(1-2) :229-34, 2011.
[72]  De Vrieze, J., Christiaens, M.E.R., Walraedt, D., Devooght, A., Zeeshan, U., Boon, N. Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure, Water Research, 111:109-17, 2017.
[73]  Zeng, L., Mangan, C., Li, X. Ammonia recovery from anaerobically digested cattle manure by steam stripping, Water Science & Technology, 54(8): 137-45, 2006.
[74]  Graterol, E.M.G. Biological treatment of industrial wastewater for biogas production, Master's thesis, University of Stavanger; p55, 2011.