International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: http://www.sciepub.com/journal/ijebb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
International Journal of Environmental Bioremediation & Biodegradation. 2017, 5(2), 41-48
DOI: 10.12691/ijebb-5-2-2
Open AccessArticle

Microcystin Biodegradation Study Using a Lagoa Dos Patos Estuary Sediment in Southern of Brasil and a Comparative Analysis of Biodegradation with Isolated Bacteria

Gilmar A. F. Lemes1, and João S. Yunes2

1Laboratório de Cianobactérias e Ficotoxinas, Av. Itália Km 08, 96201-900, Rio Grande-RS, Brasil

2Universidade Federal do Rio Grande, FURG, Brazil

Pub. Date: April 25, 2017

Cite this paper:
Gilmar A. F. Lemes and João S. Yunes. Microcystin Biodegradation Study Using a Lagoa Dos Patos Estuary Sediment in Southern of Brasil and a Comparative Analysis of Biodegradation with Isolated Bacteria. International Journal of Environmental Bioremediation & Biodegradation. 2017; 5(2):41-48. doi: 10.12691/ijebb-5-2-2

Abstract

In the Lagoa dos Patos Estuary, southern Brazil, toxic blooms of cyanobacteria have been recorded for many years. Among the species of cyanobacteria that occur in the estuary Microcystis aeruginosa produces the toxin [D-Leu1] microcystin-LR, one of the most toxic known variants. The strain Microcystis aeruginosa RST9501 was cultivated in Cyanobacteria and Phycotoxins Lab of the Oceanography Institute of the Federal University of Rio Grande - FURG and it was used for toxin extraction and purification. Sediment samples were collected from the estuary and used in the toxin degradation experiments. The decrease of toxin concentration was checked by HPLC and the results were compared with other available data. This study revealed the decreased of toxin [D-Leu1] microcystin-LR concentration of 5µg.mL-1 after six days, and also describes a comparative analysis of the biodegradation by the sediment and with a bacterium isolated from the collected sediment samples. It was suggested that the reduction in toxin concentration is mainly due the biodegradation by the bacterial community of Lagoa dos Patos Estuary present in the sediment. This confirms the potential of this technique as a complementary tool for biotechnological processes to remove toxins in water. It was also carried out a comparative analysis of the biodegradation of the toxin with sediment and biodegradation with an isolated bacteria from this sediment.

Keywords:
bacteria biodegradation cyanobacteria sediment microcystin comparative analysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293-300.
 
[2]  Chen, W., Song, L., Peng, L., Wan, N., Zhang, X., Gan, N. 2008. Reduction in microcystin concentration in large and shallow lakes: Water and sediment-interface contributions. Water Research, 42: 763-773.
 
[3]  Chen, X., Yang, X., Yang, L., Xiao, B., Wu, X., Wang, J., Wan, H. 2010. An effective pathway for the removal of microcystin-LR via anoxic biodegradation in lake sediments. Water Research, 44: 1884-1892.
 
[4]  Cousins, I. T., Bealing, D. J., James, H. A., Sutton, A. 1996. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Wat Res, 30: 481-485.
 
[5]  Gomes, A. M. A.; Oliveira, A. C. P.; Azevedo, S. M. F. de O. 2009. Efeito de diferentes concentrações de carbono orgânico dissolvido e bactérias na degradação de microcistinas (cianotoxina). Oecol. Bras. 13: 402-412.
 
[6]  Grosse, Y., Baan, R., Straif, K., Secretan, B. Ghissassi, F. E., Cogliano, V. 2006. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet oncol. 7: 628-629.
 
[7]  Grützmacher, G.; Wessel, G.; Klitzke, S. and Chorus, I. 2010. Microcystin elimination during sediment Contact. Environment Science Technology. 44, 657-662.
 
[8]  Harada, K-I, Tsuji, K; Watanabe, M.F. Stability of microcystins from cyanobacteria - III. Effect of pH and temperature. Phycologia 1996; 35(6): 83-8.
 
[9]  Harada, K- I; Imanishi, S; Kato, H; Mizuno, M; Ito, E.; Tsuji, K. 2004. Isolation of Adda from microcystin-LR by microbial degradation. Toxicon, 107-109.
 
[10]  Imanishi, S.; Kato, H.; Mizuno, M.; Tsuji, K. and Harada, K.-I. 2005. Bacterial Degradation of Microcystins and Nodularin. Chem. Res. Toxicol. 591-598.
 
[11]  Holst, T.; Jorgensen, N. O. G.; Jorgensen, C. and Johansen, A. 2003. Degradation of microcystin in sediments at oxic and anoxic denitrifying conditions. Water Research 37, 4748-4760.
 
[12]  Jia, Y.; Han, G.; Wang, C.; Guo, P., Jiang, W.; Li, X.; Tian, X. 2010. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. Journal of Hazardous 774.
 
[13]  Krishnamurthy, T., Szafraniec, L., Hunt, D.F., Shabanowitz, J., Yates, J.R., Hauer, C.R., Carmichael, W.W., Skulberg, O., Codd, G.A. Missier, S., 1989. Structural characterization of toxic cyclic peptides from blue-greeen by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 86, 770-774.
 
[14]  Lahti, K.; Kilponen, J.; Kivimaki, A. L. Erkomaa, K. Sivonen, k. 1996. Removal of cyanobacteria and their hepatotoxins from raw water in soil and sediment columns. In: Kivimaki, A. L. Suokko, T (Eds), artificial recharge of groundwater. NHP/Report n°38, Helsinki, pp 187-195.
 
[15]  Lawton, L. A.; Edwards, C.; Codd, G. 1994. Extraction and High-performance liquid chromatographic method for the determination of microcystin in raw and treated waters. Analyst, 119: 1525-1530.
 
[16]  Lawton, L. A. & Roberstson, P. K. J. 1999. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chem Soc Rev, 28: 217-224.
 
[17]  Lemes, G. A. F., Kersanach, R., Pinto, L. S., Dellagostin, A. O., Yunes, J. S., Matthiensen, A. 2008. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotox Environ Safe, 69: 358-365.
 
[18]  Lemes, G. A. F. & Yunes, J. S. 2014. Microcystins Biodegradation – A Review. LAP Lampert Academic Publishing - Germany.
 
[19]  Lemes, G. A. F., Kist. L. W., Bogo, M. R. and Yunes, J. S. 2015. Biodegradation of [D-Leu]1 microcystin-LR by bacterium isolated from sediment of Patos Lagoon estuary, Brazil. Journal of Venomous Animal and Toxins including Tropical Diseases, 21:4.
 
[20]  Luria, S. E. and J. W. Burrous. 1957. Hybridization between Escherichia coli and Shigella. J. Bacteriol. 74: 461-476.
 
[21]  Maruyama, T., Park, H. D., Ozawa, K., Tanaka, Y., Sumino, T., Hamana, K., Hiraishi, A., Kato, K. 2006. Sphingosinicella microcystinivorans gen. nov., sp. Nov., a microcystin-degrading bacterium. Int J Syst Evolut microbiol, 56: 85-89.
 
[22]  Matthiensen, A.; Yunes, J. S. & Codd, G. A. 1999. Ocorrência, distribuição e toxicidade de cianobactérias no estuário da Lagoa dos Patos, RS. Revista Brasileira de Biologia. 59(3): 361-376.
 
[23]  Matthiensen, A. 2000. Environmental and laboratory studies on the properties and fate of microcystins from the cyanobacterium Microcystis. Phd thesis, University of Dundee, Dundee, Scotland, UK. 307p.
 
[24]  Matthiensen, A., Beatie, K. A., Yunes, J. S., Kaya, K., Codd, G. A. 2000a. [D-Leu1] Microcystin-LR, from the cyanobacterium Microcystis RST 9501 and from a Microcystis bloom in the Patos Lagoon estuary, Brazil. Phytochemistry, 55: 383-387.
 
[25]  Morsen, A. & Rehm, H. J. 1987. Degradation of phenol by a mixed culture of Pseudomonas putida and Crytococcus elinonii adsorbed on activated carbon. Applied Microbial Biotecnology. 26: 283-288.
 
[26]  Nealson, K. H. 1997. Sediment bacteria: Who’s there, What are they doing and what’s new? Annu. Rev. Earth Planet. Sci. 25: 403-434.
 
[27]  Rapala, J.; Lahti, K.; Sivonen, K.; Niemelä, S. I. 1994. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Lett Appl Microbiol, 19: 423-428.
 
[28]  Revathy, T.; Jayasri, M. A. and Suthindhiran, K. 2015. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments. Scientifica.2015: 867586.
 
[29]  Rippka, R.; Deruelles, J.; Waterbury, J. B.; Herdman, M.; Stanier, R. Y.1979. Generic Assignments, Strain Histories, and properties of pure cultures of cyanobacteria. Journal General microbiology, 111: 1-61.
 
[30]  Roberston, P. K. J.; Lawton, L. A.; Cornish, B. J. P. A. 1999. The involvement of phycocyanin pigment in the photodecomposition of the cyanobacterial toxin, microcystin-LR. Journal of Porphyrins and Phthalocyamines, 3: 544-551.
 
[31]  Santos, I. R.; Baisch, P.; Lima, G.; Mirlean, N.; Griep, G.; Silva-Filho, E. V. 2004. Análise estatística multivariada de parâmetros geoquímicos em sedimentos da laguna dos Patos. Geochim. Brasil, 1: 38-45.
 
[32]  Santos, P. R. N. de M. dos; kolm, H. E.; Sautter K. D. 2008. Bactérias em sedimentos da região entre-marés da baía de Guaratuba, Paraná, Brasil. Braz. J. Aquat. Sci Technol. 1:9-17.
 
[33]  Takenaka, S. and Watanabe, M. F. 1997. Microcystin-LR degradation by Pseudomonas aeruginosa alkaline protease. Chemosphere, 34: 749-757.
 
[34]  Tsuji, K. Masui, H. Uemura, H. mori, Y., Harada, K.-I. 2001. Analysis of microcystins in sediments using MMPB method. Toxicon, 39:687-692.
 
[35]  Wiegand, C.; Pflugmacher, S. 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology, 203: 201-218.
 
[36]  Windom, H.; Niencheski, F. 2003. Biogeochemical process in a freshwater-seawater mixing zone in permeable sediments along the coast of Southern Brazil. Marine Chesmistry, 83:121-130.
 
[37]  Yunes, J. S.; Niencheski, L. F. H.; Salomón, P. S.; Marcelo, P.; Beattie, K. A.; Ragget, S. L. & Codd G. A. 1994. Development and toxicity of cyanobacteria in the Patos Lagoon estuary, Southern Brazil. IOC Workshop Report, 101. annex III, COI/UNESCO Publ.: 14-19.
 
[38]  Yunes, J.S.; Salomón, P.S.; Matthiensen, A.; Beattie, K. A.; Raggett, S. L.; Codd, G. A. 1996. Toxic blooms of cyanobacteria in Patos Lagoon Estuary, southern Brazil. Journal of Aquatic Ecosystem Health, 5: 223-229.
 
[39]  Yunes, J. S.; Niencheski, L. F. H.; Salomón, P. S.; Marcelo, P.; Beattie, K. A.; Ragget, S. L. & Codd G. A. 1998. Effect of nutrient balance and physical factors on blooms of toxic cyanobacteria in the Patos Lagoon, southern Brazil. Verh. Internat. Verein. Limnol. 26, 1796-1800.
 
[40]  Yunes, J. S. 2009. Florações de Microcystis na Lagoa dos Patos e o seu estuário. 20 anos de estudos. Oecol. Bras. 13(2): 313-318.