International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: http://www.sciepub.com/journal/ijebb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
International Journal of Environmental Bioremediation & Biodegradation. 2013, 1(1), 6-13
DOI: 10.12691/ijebb-1-1-2
Open AccessArticle

Microbial Decolorization of Remazol Brilliant Orange 3R, Remazol Black B & Remazol Brilliant Violet Dyes in a Sequential Anaerobic-Aerobic System

Maulin P Shah1, , Kavita A Patel1, Sunu S Nair1 and A M Darji1

1Industrial Waste Water Research Laboratory, Applied & Environmental Microbiology Lab, Enviro Technology Limited (CETP), Gujarat, India

Pub. Date: October 11, 2013

Cite this paper:
Maulin P Shah, Kavita A Patel, Sunu S Nair and A M Darji. Microbial Decolorization of Remazol Brilliant Orange 3R, Remazol Black B & Remazol Brilliant Violet Dyes in a Sequential Anaerobic-Aerobic System. International Journal of Environmental Bioremediation & Biodegradation. 2013; 1(1):6-13. doi: 10.12691/ijebb-1-1-2

Abstract

A sequential anaerobic–aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent-contaminated soil was used to degrade reactive azo dyes Remazol Brilliant Orange 3R. Remazol Black B and Remazol Brilliant Violet 5R. Treating synthetic dye wastewater with the combination anaerobic and aerobic process showed that the majority of colors were removed by the anaerobic process, on the other hand the majority of chemical oxygen demand (COD) was removed in the subsequent aerobic process. Samples from combined anaerobic–aerobic system at the beginning of anaerobic process, after anaerobic process and after subsequent aerobic process were analyzed by high performance liquid chromatography (HPLC). The results suggested that under anaerobic conditions, the azo dyes were reduced and the aromatic amines were generated by the bacterial biomass. After re-aeration of the synthetic dye wastewater, these amines were further degraded by the same isolates. Thus, total degradation of reactive azo dyes was achieved by using an anaerobic–aerobic treatment.

Keywords:
Remazol Brilliant Orange 3R. Remazol Black B and Remazol Brilliant Violet 5R Sequential Anaerobic-Aerobic System

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  H. Zollinger, In: Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, VCH Publishers, New York, 1987, pp. 92-100.
 
[2]  J.R. Easton, The dye marker’s view, In: Cooper P. (Ed.). Colour in Dyehouse Effluent, 1995.
 
[3]  C.M. Carliell, S.J. Barclay, N. Naidoo, C.A. Buckley, D.A. Mulholland, E. Senior, Microbial decolorization of a reactive azo dye under anaerobic conditions, Water SA 21 (1995) 61-69.
 
[4]  O.J. Hao, H. Kim, P.C. Chaing, Decolorization of wastewater, Cri. Rev. Environ. Sci. Technol. 30 (2000) 449-505.
 
[5]  P. Nigam, I.M. Banat, D. Singh, R. Merchant, Microbial process for the decolourization of textile effluent containing azo, diazo and reactive dyes, Process Biochem. 31 (1996) 435-442.
 
[6]  C. O’Neill, A. Lopez, S. Esteves, F.R. Hawkes, D.L. Hawkes, S. Wilcox, Azo-dye degradation in an anaerobic–aerobic treatment system operating on simulated textile effluent, Appl. Microbiol. Biotechnol. 53 (2000) 249-254.
 
[7]  W. Haug, A. Schmidt, B. Nortman, D.C. Hempel, A. Stolz, H.J. Knackmuss, Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium, Appl. Environ. Microbiol. 57 (1991) 3144–3149.
 
[8]  E.J. Weber, Studies of benzidine-based dyes in sediment–water systems, Environ. Toxicol. Chem. 9 (1991) 609.
 
[9]  U. Zissi, G. Lyberatos, Azo-dye biodegradation under anoxic conditions, Water Sci. Technol. 34 (1996) 495-500.
 
[10]  S. Seshadri, P.L. Bishop, A.M. Agha, Anaerobic–aerobic treatment of selected azo dyes in wastewater, Waste Manage. 14 (1994) 127-137.
 
[11]  Y. Zaoyan, S. Ke, S. Guangliang, Y. Fan, D. Jinshan, M. Hunanian, Anaerobic–aerobic treatment of a dye wastewater by combination of RBC with activated sludge, Water Sci. Technol. 26 (1992) 2093-2096.
 
[12]  C. Harmer, P. Bishop, Transformation of azo dye AO-7 by wastewater biofilms, Water Sci. Technol. 263-4 (1992) 627–636.
 
[13]  J.A. Field, A.J.M. Stems, M. Kato, G. Schraa, Enhanced biodegradation of aromatic pollutants in co-cultures of anaerobic and aerobic bacterial consortia, Antonie van Leeuwenhoek 67 (1995) 47-77.
 
[14]  J. Yu, X. Wang, P.L. Yue, Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains, Water Res. 35 (2001) 3579-3586.
 
[15]  T. Zimmermann, H.G. Kulla, T. Leisinger, Properties of purified orange azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46, Eur. J. Biochem. 129 (1982) 197-203.
 
[16]  American Public Health Association (APHA), Standard Methods of American Public Health Association or Examination of Water and Wastewater. 18th ed., American Public Health Association, Washington, DC, 1992.
 
[17]  N.R. Kney, J.G. Holt, In: Bergey’s Manual of Systematic Bacteriology, Williams & Wiliness, London, 1984, vol. 1, pp. 141-219.
 
[18]  N. Supaka, Microbial decolorization of reactive dyes in an anaerobic–aerobic treatment system, Ph.D. thesis, 2003. Chulalongkorn University, Bangkok, Thailand.
 
[19]  K. Wuhrmann, K.L. Mechsner, T.H. Kappeler, Investigation on rate-determining factors in the microbial reduction of azo dyes, Eur. J. Appl. Microbiol. Biotechnol. 9 (1980) 325-338.
 
[20]  J.S. Chang, C. Chou, Y.C. Lin, P.J. Lin, J.Y. Ho, T.L. Hu, Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola, Water Res. 35 (2001) 2841-2850.
 
[21]  T. Bechtold, E. Burtscher, A. Turcanu, O. Bobleter, The reduction of vat dye by indirect electrolysis, J. Soc. Dyers Colour. 110 (1994) 14-19.
 
[22]  B. Nortemann, J. Baumgarten, H.G. Rast, H.-J. Knackmuss, Bacterial communities degrading amino- and hydroxynaphthalenesulfonates, Appl. Environ. Microbiol. 52 (1986) 1195-1202.
 
[23]  P. Nigam, I.M. Banat, D. Singh, R. Marchant, Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes, Process. Biochem. 31 (1996) 435-442.
 
[24]  D.A. Oxspring, G. McMullan, W.F. Smyth, R. Marchant, Decolorisation and metabolism of the reactive textile dye, Remazol Black B, by an immobilized microbial consortium, Biotechnol. Lett. 18 (1996) 527-530.
 
[25]  T. Setiadi, M. van Loosdrecht, Anaerobic decolorization of textile wastewater containing reactive azo dyes. In: Proceedings of the Eighth International Conference on An Digest, Sendai, Japan, vol. 2, 1997, 437-444.
 
[26]  M. Beydilli, I. Pavlosathis, W.C. Tincher, Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions, Water Sci. Technol. 38 (1998) 225-232.
 
[27]  R. Ganesh, G.D. Boardman, D. Michelsen, Fate of azo dye in sludge, Water Res. 28 (1994) 1367-1376.
 
[28]  T. Panswad, W. Luangdilok, Decolorization of reactive dyes with different molecular structures under different environmental conditions, Water Res. 34 (2000) 4177-4184.
 
[29]  B.Y. Chen, Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics, Process Biochem. 38 (2002) 437-446.
 
[30]  H.S. Strauss, Is bioremediation green technology? J. Soil Contam. 6 (1997) 219-225.
 
[31]  M. Kudlich, M.J. Hetheridge, H.-J. Knackmuss, A. Stolz, Autooxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes, Environ. Sci. Technol. 33 (1999) 896-901.
 
[32]  R. Diekmann, B. Nortemann, D.C. Hempel, H.J. Knackmuss, Degradation of 6-aminonaphthalene-2-sulfonic acid by mixed cultures: kinetic analysis, Appl. Microbiol. Biotechnol. 29 (1988) 85-88.
 
[33]  N.D. Lourenco, J.M. Novais, H.M. Pinheiro, Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor, J. Biotechnol. 89 (2001) 163-174.
 
[34]  F. Sosath, J.A. Libra, Biologische Behandlung von synthetischen Abwassern mit Azofarbstoffen, Acta. Hydrochim. Hydrobiol. 25 (1997) 259-264.