International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
International Journal of Environmental Bioremediation & Biodegradation. 2017, 5(1), 18-26
DOI: 10.12691/ijebb-5-1-3
Open AccessArticle

Gas Chromatographic Approach to Evaluate the Efficacy of Organotin Degrading Microbes

Christopher Finnegan1, , David Ryan1, Anne-Marie Enright1 and Guiomar Garcia-Cabellos1

1Enviro CORE, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland

Pub. Date: March 09, 2017

Cite this paper:
Christopher Finnegan, David Ryan, Anne-Marie Enright and Guiomar Garcia-Cabellos. Gas Chromatographic Approach to Evaluate the Efficacy of Organotin Degrading Microbes. International Journal of Environmental Bioremediation & Biodegradation. 2017; 5(1):18-26. doi: 10.12691/ijebb-5-1-3


Tributyltin (TBT) is the most toxic chemical ever knowingly introduced into the marine environment, exerting lethal effects on a wide variety of marine organisms. Due to the impact of TBT a necessity exists for the screening of TBT resistant and degrading bacteria for the treatment of contaminated marine sediment. Therefore the approach taken for this study was to isolate and identify new TBT resistant and utilising microbes from marine sediments and soils. In addition to carry out and optimise batch TBT biodegradation assays to measure the TBT degradation rate and the production of the degradation products dibutyltin (DBT) and monobutyltin (MBT) over 21 days. Assays used to screen isolates identified six candidate strains which were characterised and utilised in biodegradation assays. Liquid, from biodegradation assays were analysed on gas chromatography mass spectrometry, which accurately measured and identified tributyltin and differentiated between TBT and the degradation products (DBT and MBT). Results showed a maximum decrease of ≥70% TBT in liquid samples recovered from batch assays and increases in the levels of DBT and MBT the least toxic of the compounds by 32% and 19% respectively, indicating the bacterial breakdown of TBT.

tributyltin microorganisms contaminated soils marine sediments bioremediation characterisation gas chromatography

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Antizar-Ladislao, B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment International, 34(2), pp. 292-308.
[2]  Kotrikla, A. (2009). Environmental management aspects for TBT antifouling wastes from the shipyards. Journal of Environmental Management, 90, pp.S77-S85.
[3]  Du, J., Chadalavada, S., Chen, Z. and Naidu, R. (2014). Environmental remediation techniques of tributyltin contamination in soil and water: A review. Chemical Engineering Journal, 235, pp.141-150.
[4]  Gadd, G. (2000). Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Science of The Total Environment, 258(1-2), pp.119-127.
[5]  Khanolkar, D., Dubey, S. and Naik, M. (2015). Biotransformation of tributyltin chloride to less toxic dibutyltin dichloride and monobutyltin trichloride by Klebsiella pneumoniae strain SD9. International Biodeterioration & Biodegradation, 104, pp. 212-218.
[6]  Silva, P., Silva, A., Mendo, S. and Loureiro, S. (2014). Toxicity of tributyltin (TBT) to terrestrial organisms and its species sensitivity distribution. Science of The Total Environment, 466-467, pp. 1037-1046.
[7]  Morabito, R. (2000). Derivatization methods for the determination of organotin compounds in environmental samples. TrAC Trends in Analytical Chemistry, 19(2-3), pp.113-119.
[8]  Cruz, A., Henriques, I., Sousa, A., Baptista, I., Almeida, A., Takahashi, S., Tanabe, S., Correia, A., Suzuki, S., Anselmo, A. and Mendo, S. (2014). A microcosm approach to evaluate the degradation of tributyltin (TBT) by Aeromonas molluscorum Av27 in estuarine sediments. Environmental Research, 132, pp.430-437.
[9]  Zhou, Q., Jiang, G. and Liu, J. (2002). Organotin Pollution in China. The Scientific World JOURNAL, 2, pp.655-659.
[10]  TAKEUCHI, M., MIZUISHI, K. and HOBO, T. (2000). Determination of Organotin Compounds in Environmental Samples. Analytical Sciences, 16(4), pp.349-359.
[11]  Moscoso-Pérez, C., Fernández-González, V., Moreda-Piñeiro, J., López-Mahía, P., Muniategui-Lorenzo, S. and Prada-Rodríguez, D. (2015). Determination of organotin compounds in waters by headspace solid phase microextraction gas chromatography triple quadrupole tandem mass spectrometry under the European Water Framework Directive. Journal of Chromatography A, 1385, pp.85-93.
[12]  Yongil, W. (2004). Application of a Gas Chromatography/Mass Spectrometric Method for the Determination of Butyltin Compounds in Sediment. Bulletin of the Korean Chemical Society, 25(10), pp.1508-1512.
[13]  Leermakers, M., Nuyttens, J. and Baeyens, W. (2005). Organotin analysis by gas chromatography-pulsed flame-photometric detection (GC-PFPD). Analytical and Bioanalytical Chemistry, 381(6), pp.1272-1280.
[14]  Plzák, Z., Polanská, M. and Suchánek, M. (1995). Identification and determination of butyltin compounds in water by ion trap gas chromatography-mass spectrometry after conversion to methyl or hydride derivatives. Journal of Chromatography A, 699(1-2), pp.241-252.
[15]  Zachariadis, G. (2013). In situ derivatization of metals and organometallics using borate reagents in gas chromatographic speciation studies. Journal of Chromatography A, 1296, pp.47-69.
[16]  Jin, J., Yang, L., Chan, S., Luan, T., Li, Y. and Tam, N. (2011). Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water. Journal of Hazardous Materials, 185(2-3), pp.1582-1586.
[17]  Berto, D., Giani, M., Boscolo, R., Covelli, S., Giovanardi, O., Massironi, M. and Grassia, L. (2007). Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice lagoon (Italy). Marine Pollution Bulletin, 55(10-12), pp.425-435.
[18]  Roy, U. and Bhosle, S. (2005). Microbial transformation of tributyltin chloride by Pseudomonas aeruginosa strain USS25 NCIM-5224. Applied Organometallic Chemistry, 20(1), pp.5-11.
[19]  Abraham, W., Nogales, B., Golyshin, P., Pieper, D. and Timmis, K. (2002). Polychlorinated biphenyl-degrading microbial communities in soils and sediments.Current Opinion in Microbiology, 5(3), pp.246-253.
[20]  DeLong, E. (1992). Archaea in coastal marine environments. Proceedings of the National Academy of Sciences, 89(12), pp.5685-5689.
[21]  Lane, D., Pace, B., Olsen, G., Stahl, D., Sogin, M. and Pace, N. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences, 82(20), pp.6955-6959.
[22]  Olsen, G., Overbeek, R., Larsen, N., Marsh, T., McCaughey, M., Maciukenas, M., Kuan, W., Macke, T., Xing, Y. and Woese, C. (1992). The Ribosomal Database Project. Nucleic Acids Research, 20(suppl), pp.2199-2200.
[23]  Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), pp.3389-3402.
[24]  Thompson, J. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), pp. 4876-4882.
[25]  Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), pp.111-120.
[26]  Wilken, R., Kuballa, J. and Jantzen, E. (1994). Organotins: their analysis and assessment in the Elbe river system, Northern Germany. Fresenius' Journal of Analytical Chemistry, 350(1-2), pp.77-84.
[27]  OSPAR.2002. JAMP Guidelines for Monitoring Contaminants in Sediment. Assessment of CEMP data. OSPAR (2005): 2002-16.
[28]  Sakultantimetha, A., Keenan, H., Dyer, M., Beattie, T., Bangkedphol, S., Songsasen, A., Galvez, R., Dyer, M. and Dean, S. (2009). Isolation of Tributyltin-Degrading Bacteria Citrobacter braakii and Enterobacter cloacae from Butyltin-Polluted Sediment. Journal of ASTM International, 6(6), p.102120.
[29]  Dubey, S. and Roy, U. (2003). Review: Biodegradation of tributyltins (organotins) by marine bacteria. Applied Organometallic Chemistry, 17(1), pp.3-8.
[30]  Bramhachar, P., Kumar, B., Deepika, K. and Gnanender, S. (2014). Alcaligenes sp. Strain VBAK101: A Potent Tributyltin Chloride (TBTCL) Resistant Bacteria Isolated from Vishakaptanam Shipping Harbour Sediments. Research Journal of Microbiology, 9(2), pp.82-94.
[31]  Cruz, A., Anselmo, A., Suzuki, S. and Mendo, S. (2015). Tributyltin (TBT): A Review on Microbial Resistance and Degradation. Critical Reviews in Environmental Science and Technology, 45(9), pp.970-1006.
[32]  Cruz, A., Caetano, T., Suzuki, S. and Mendo, S. (2007). Aeromonas veronii, a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal. Marine Environmental Research, 64(5), pp.639-650.
[33]  Jeong, B., Hong, S., Choi, Y., Kumaran, R., Kim, M., Kim, S. and Kim, H. (2011). Isolation of Tributyltin Chloride Resistance Bacteria and Rapid Electrochemical Determination of Bacterial Organotin Degradation Activity. Bulletin of the Korean Chemical Society, 32(1), pp.356-358.
[34]  Cruz, A., Areias, D., Duarte, A., Correia, A., Suzuki, S. and Mendo, S. (2013). Aeromonas molluscorum Av27 is a potential tributyltin (TBT) bioremediator: phenotypic and genotypic characterization indicates its safe application. Antonie van Leeuwenhoek, 104(3), pp.385-396.
[35]  Cooney, J. (1995). Organotin compounds and aquatic bacteria: A review. Helgoländer Meeresuntersuchungen, 49(1-4), pp.663-677.
[36]  Ebah, E., Ichor, T. and Okpokwasili, G. (2016). Isolation and Biological Characterization of Tributyltin Degrading Bacterial from Onne Port Sediment. Open Journal of Marine Science, 06(02), pp.193-199.
[37]  Sakultantimetha, A., Keenan, H., Beattie, T., Aspray, T., Bangkedphol, S. and Songsasen, A. (2010). Acceleration of tributyltin biodegradation by sediment microorganisms under optimized environmental conditions. International Biodeterioration & Biodegradation, 64(6), pp.467-473.
[38]  Vinas, M., Sabate, J., Espuny, M. and Solanas, A. (2005). Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil. Applied and Environmental Microbiology, 71(11), pp.7008-7018.
[39]  Mueller, J., Chapman, P. and Pritchard, P. (1989). Creosote-contaminated sites. Their potential for bioremediation. Environmental Science & Technology, 23(10), pp.1197-1201.
[40]  Scott, D. (1990). The NIST/EPA/MSDC mass spectral database, personal computer versions 1.0 and 2.0. Chemometrics and Intelligent Laboratory Systems, 8(1), pp.3-5.